OVERVIEW OF SOFTWARE RADIOS

Presented by Jeff Wepman
Institute for Telecommunication Sciences
National Telecommunications and Information Administration
United States Department of Commerce
INTRODUCTION

• Software Radio Definition
• General Benefits of Software Radios
• Key Factors in Software Radios
 – Receiver: ADC’s & Signal Processing Hardware
 – Transmitter: Signal Processing Hardware & DAC’s (also Linear Pwr Amp)
• Conclusion & Software Radio Presentations at Symposium
 – Opening Session
 – Technologies Session
 – Applications Session
SOFTWARE RADIO DEFINITION

• The term “software radio”
 – Prefer very broad definition
 – Define in terms of receiver & transmitter

• Software Radio Receiver
 – Received signal digitized & processed w/DSP
 – Digitization may occur at RF, IF, or baseband
 – Inherent in definition: flexibility to change processing
 – Possesses some level of programmability to change the way it processes received signal
 – Belongs to general class Digitized Signal Receivers
 – Digitized Signal Receivers: Not necessarily programmable
SOFTWARE RADIO DEFINITION

• Software Radio Transmitter
 – Modulated signal to be transmitted generated w/DSP & converted to analog for transmission
 – Modulated signal generated as digitized signal
 – Conversion to analog may occur at baseband, IF, or RF
 – Inherent in definition: flexibility to change processing
 – Possesses some level of programmability to change the way it processes transmitted signal
 – Belongs to general class Digitized Signal Transmitters
 – Digitized Signal Transmitters: Not necessarily programmable
SOFTWARE RADIOS

• Software Radios do not necessarily imply digital modulation (FSK, PSK, etc.)
 – Modulation may be analog (FM, AM, etc.)

• Don’t confuse modulation type w/Software Radio definition
 – Received signal digitized
 – Modulated signal generated as digitized signal in transmitter
BENEFITS OF SOFTWARE RADIOS

• Many benefits result replacing analog implementations radio functions w/ software or digital hardware

• Radios can be designed for transmission & reception w/ different freq. bands, modulation types, & BW’s simply by changing software

• Potential reduction in product development time

• Radio functions can be implemented that cannot be implemented in analog hardware
 – Example: FIR filter, sharp rolloff & linear phase
BENEFITS OF SOFTWARE RADIOS

- Radio functions implemented w/ DSP offer performance closer to ideal

- Repeatability and temp stability substantially better than w/ analog hardware

- Radio functions implemented w/ DSP don’t require tuning or tweaking typically required in analog hardware
Ideal Software Radio Receiver

- Digitization at output of antenna
- Illustrates key components: ADC & DSP
- Practical problems w/ideal software receivers
 - Bandlimit ADC input, prevent aliasing
 - ADC’s require large signals (FSR ≈ 1V or more)
 - RF signals much smaller
Ideal Software Radio Receiver - Practical Problems

- RF signals
 - Overall amplitude at any time: very small to large
 - Small desired & Large undesired signals simultaneously
- Small RF signals require amplifier before ADC
- Large variation in overall amplitude requires AGC before ADC
 - AGC prevents ADC overload by large signals
 - AGC preserves good sensitivity for small signals
- Small desired w/ large undesired signal requires high SFDR ADC
MORE REALISTIC SOFTWARE RADIO RECEIVER

- Practical implementation problems w/ configuration
 - Practical ADC & sig proc hardware constrain architecture
- For given radio service/ freq band
 - ADC sample rate, SFDR, & SNR along w/ speed of sig proc hardware determine where digitization can occur
 - RF, IF, or baseband
- Require closer look at ADC’s and DSP hardware
- Overview: discuss briefly; Technology session: more detail
ANALOG TO DIGITAL CONVERSION

• Methods of Sampling

• Important Specifications for Receivers

• Current State-of-the Art in ADC’s
SAMPLING METHODS

• Two basic classes
 – Uniform time spacing between samples
 – Non-uniform (not readily available)

• When sampling signal uniformly
 – Spectrum of signal repeated at integer multiples of sampling frequency
UNIFORM SAMPLING METHODS

• 2 times max frequency
 – For perfectly bandlimited signal allows exact reconstruction of input signal
 – Need filter with infinite attenuation at frequencies $> f_{\text{max}}$
 – Filters not practically realizable
 – With real filters always get signal distortion
UNIFORM SAMPLING METHODS

• Oversampling
 – Sample at rates $> 2 f_{\text{max}}$
 – Improves SNR
 – Eases requirements on anti-aliasing filter

• Bandpass sampling
 – Sample at 2 or more times signal bandwidth not $2f_{\text{max}}$
 – Good for bandpass signals (no freq. content below f_1 or above f_h)
 – Stringent restrictions on exact sample frequencies between 2 times BW and $2f_{\text{max}}$
 – Requires much lower sampling frequencies than $2f_{\text{max}}$
BANDPASS SAMPLING EXAMPLE

• 1 MHz BW signal @ 900 MHz center freq
 – Need to sample > 2 Msamples/sec not > 1800 Msamples/sec
 – Exact sample rates above 2 Msamples/sec restricted
 – ADC must be able to operate on 900 MHz signal
IMPORTANT ADC SPECS

• Important software radio ADC specs include
 – Sample rate, Max analog input freq, SNR, & SFDR

• Theoretical maximum SNR for sinusoidal input
 – SNR = 6.02B + 1.76 + 10 \log_{10}(f_s/2f_{\text{max}}) \text{ dB}
 B = \# \text{ of bits}, f_s = \text{sampling freq.}
 – If f_s = 2f_{\text{max}}, \text{SNR} \approx 6B
 – SNR increases as f_s > 2f_{\text{max}} (Oversampling)
IMPORTANT ADC SPECS

• SFDR
 – Ratio between signal power & largest spur
 – Input signal - Single tone or multitone (IMD)
 – SFDR important - Detect small signal in presence of large signal
 – Theoretical prediction difficult (must measure)
 – Misconception - SFDR not equal to SNR
 – SFDR can be much > SNR
DIGITAL SIGNAL PROCESSING

• Key considerations:
 – What RCVR/XMTR functions need implemented
 – Type of signal processing hardware to use

• Most radio receiver applications: need real time proc
 – Speed of processing must keep up w/ input data rate

• Estimate required processing speed by:
 – Number & complexity functions to implement
 – Input data rate into processing hardware

• Compare required proc speed to avail proc throughput of proc hardware
DIGITAL SIGNAL PROCESSING RADIO FUNCTIONS

• Radio functions possibly needed
 – Upconversion/Downconversion
 – Filtering
 – Modulation/Demodulation
 – Multiple Access Processing
 – Frequency Spreading/ Despreading
 – Encryption/Decryption
 – Channel & Source Coding/ Decoding
SIGNAL PROCESSING OPTIONS

• Four general classes of signal processing hardware
 1) General purpose microprocessors
 2) Digital signal processors
 3) Field programmable gate arrays (FPGA’s)
 4) Application Specific Integrated Circuits (ASIC’s)
 – Examples: digital downconverters, upconverters, demodulators
SIGNAL PROCESSING OPTIONS – COMPARISON METHODS

• Methods of comparison of different signal processing options
 1) Parallelism – number of operations performed at same time
 2) Reuse of gates/ time sharing of same hardware to implement radio functions (algorithms)
 3) Flexibility/ Reprogrammability/ Reconfigurability
 4) Speed
COMPARISON OF SIGNAL PROCESSING OPTIONS

<table>
<thead>
<tr>
<th></th>
<th>Parallelism</th>
<th>Reuse of Gates/Time Sharing</th>
<th>Flexibility/Reprogrammability</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microprocessor</td>
<td>Low (none)</td>
<td>High</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>DSP Chip</td>
<td>Some</td>
<td>Moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPGA</td>
<td>High</td>
<td>None</td>
<td>Low (None)</td>
<td>High</td>
</tr>
<tr>
<td>ASIC</td>
<td>High</td>
<td>None</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SIGNAL PROCESSING OPTIONS – CHOICES

• Choice of signal processing devices depends on:
 1) Required processing throughput for radio functions implemented
 2) Required amount reprogrammability/reconfigurability
 3) Background/experience design team
 4) Time to market considerations
 5) Power consumption
 6) Cost – related to quantity
CONCLUSION

• Software Radio Definition
 – Receiver & Transmitter

• General Benefits of Software Radios

• Key Factors in Software Radios
 – Receiver: ADC’s & Signal Processing Hardware
 – Transmitter: Signal Processing Hardware & DAC’s
 (also Linear Pwr Amp)

• Software Radio Presentations at Symposium
 – Two half-day sessions: Technologies, Applications
 – This Opening Session
SOFTWARE RADIO PRESENTATIONS

• Opening Session
 – MMITS Forum Activities Presentation

• Technologies Session
 – More about software radio architectures
 – RF interface issues
 – ADC’s & DAC’s
 – Digital Signal Processing: Techniques, DSP chips, FPGA’s, & ASIC’s
SOFTWARE RADIO PRESENTATIONS

• Applications Session
 – Current implementations of software radios
 – Cellular/ PCS applications
 – Speakeasy military software radio
 – GPS receiver application
 – HF/VHF/UHF applications
 – Wireless network applications