SOFTWARE RADIO ARCHITECTURE
SOFTWARE RADIO ARCHITECTURE

Object-Oriented Approaches to Wireless Systems Engineering

Joseph Mitola III
Consulting Scientist

A Wiley-Interscience Publication
JOHN WILEY & SONS, INC.
New York • Chichester • Weinheim • Brisbane • Singapore • Toronto
For Lynné

... for Barb & Max

and Dad and Mom
and my Mentors
and the “Alpha’s”

“In the Public Interest”
CONTENTS

Preface xvii

1 Introduction and Overview 1

I. Revolution and Evolution 1
II. A Systematic Exposition 2
III. The Ideal Software Radio 2
IV. The Software Radio Functional Architecture 5
   A. The Software Radio Functional Model 5
   B. Functional Interfaces 8
   C. Architecture 9
   D. Levels of Abstraction 11
V. Basic Signal Processing Streams 13
   A. The Real-Time Channel Processing Stream 13
   B. The Environment Management Stream 14
   C. On-line Adaptation 15
   D. Off-Line Software Tools 15
VI. Implementation Alternatives 17
   A. Defining the Radio Platform 19
   B. Evolving the Radio Platform 23
VII. The Acquisition of Software Radios 24
    A. Critical Acquisition Parameters 24
    B. Channelization 25
    C. Programmable Digital Access 26
    D. Hardware Modularity 27
    E. Software Flexibility and Affordability 27
    F. Architecture Openness 28
VIII. Broader Implications of the Software Radio 29
    A. Type Certification 29
    B. Incremental Download Stability and Type Certification 30
    C. Spectrum Management Implications 31
IX. Exercises 33
Architecture Evolution

I. Technology-Demographics
   A. Functions, Components, and Design Rules
   B. Global Restructuring Through 2G and 3G Mobile Cellular Radio
   C. Complexity Equals Software
II. Commercial Architecture Needs
   A. The BellSouth Software-Defined Radio (SDR)
   B. European Perspectives
   C. Asian Perspectives
   D. Regional Differences
   E. Differentiating Market Segments
III. Military Architecture Needs
   A. Defense Information Infrastructures
   B. Tactical Military Needs
IV. Open Architecture and Standards Evolution
   A. The Software-Defined Radio (SDR) Forum
   B. Product Standards Organizations
   C. Air Interface Standards
   D. The Global Deliberative Process
V. Architecture Evolution Roadmap
VI. Exercises

The Radio Spectrum and RF Environment

I. RF Signal Space
   A. Overview of Radio Bands and Modes
   B. Dynamic Range-Bandwidth Product
II. HF Band Communications Modes
   A. HF Propagation
   B. HF Air Interface Modes
   C. HF Services and Products
III. Low-Band Noise and Interference
IV. Low VHF (LVHF) Band Communications Modes
   A. LVHF Propagation
   B. Single-Channel-per-Carrier LVHF Air Interface Modes
   C. LVHF Spread-Spectrum Air Interfaces
   D. LVHF Multichannel Air Interfaces
   E. LVHF Services and Products
   F. LVHF Software Radio
V. Multipath Propagation
III. Network Architecture Analysis  140
  A. Network Hierarchies  141
  B. Commercial Networks  144
  C. Military Networks  151
  D. Mode Parameter Analysis  152

IV. Analyzing the Protocol Stacks  154
  A. Mapping Applications to Protocol Stacks  156
  B. The Network Layer  160
  C. The Data Link Layer  162
  D. The Physical Layer Analysis  165
  E. Alternate Protocol Stacks: Wireless ATM  168
  F. Exercises  169

V. Systems-Level Architecture Parameters  170
  A. Exercises  170

5  Node-Level Architecture Analysis  171

I. Architecture Representation  172
  A. Functional Design Hierarchies  174
  B. Object-Oriented Approaches  178
  C. Reference Platform Integration  180
  D. Using UML to Analyze Node Architectures  182
  E. A Topological Model of Architecture  185
  F. The Canonical Software Radio Node Architecture  191
  G. Digital Signal Processing Flow Parameters  199
  H. Node-Level Architecture Capability Profile  204
  I. Exercises  206

II. Industry-Standard Node Architectures  207
  A. SDR Forum Architecture Framework  207
  B. ITU-R IMT-2000 Device Architecture  213
  C. Exercises  213

III. Programmable Digital Radio (PDR) Case Studies  215
  A. A Basic Commercial PDR  215
  B. Multimode Conventional Radios  218
  C. GEC’s Programmable Digital Radio  220
  D. ITT Digital Radio  221
  E. Commercial Progenitors: AirNet  223

IV. Technology Pathfinders  224
  A. COTS Research Pathfinders  224
  B. SPEAKEasy, the Military Technology Pathfinder  225
  C. Joint Communications Interoperability Terminal  232

V. Exercises  235
CONTENTS

6 Segment Design Tradeoffs 236
   I. Overview 236
   II. Antenna Tradeoffs 237
   III. RF and IF Processing Tradeoffs 238
   IV. ADC Tradeoffs 238
   V. Digital Architecture Tradeoffs 239
   VI. Software Architecture Tradeoffs 240
   VII. Performance Management Tradeoffs 241
   VIII. End-to-End Tradeoffs 242
   IX. Exercises 242

7 Antenna Segment Tradeoffs 244
   I. RF Access 244
   II. Parameter Control 246
       A. Linearity and Phase Noise 246
       B. Parameters for Emitter Locations 246
   III. Packaging, Installation, and Operational Challenges 247
       A. Gain versus Packaging 247
       B. Bandwidth versus Packaging 248
       C. Antenna Calibration 248
       D. Antenna Separation 251
       E. Human Body Interactions 252
   IV. Antenna Diversity 253
       A. Spatial Coherence Analysis 254
       B. Potential Benefits of Spatial Diversity 256
       C. Spatial and Spectral Diversity 257
       D. Diversity Architecture Tradeoffs 257
   V. Programmable Antennas 260
   VI. Cost Tradeoffs 261
   VII. Summary and Conclusions 262
   VIII. Exercises 263

8 RF/IF Conversion Segment Tradeoffs 265
   I. RF Conversion Architectures 265
   II. Receiver Architectures 267
       A. The Superheterodyne Receiver 267
       B. Direct Conversion Receiver 270
       C. Digital-RF Receivers 271
       D. Interference Suppression 272
   III. RF Component Technology 277
       A. RF MEMS 277
       B. Superconducting Filters 280
## Contents

C. Dual-Mode Amplifiers 281  
D. Electronically Programmable Analog Components 281  

IV. RF Subsystem Performance 282  
V. RF/IF Conversion Issues 285  
VI. Exercises 286  

9 ADC and DAC Tradeoffs 289  

I. Review of ADC Fundamentals 289  
   A. Dynamic Range (DNR) Budget 290  
   B. Anti-aliasing Filters 290  
   C. Clipping Distortion 292  
   D. Aperture Jitter 292  
   E. Quantization and Dynamic Range 293  
   F. Technology Limits 294  

II. ADC and DAC Tradeoffs 294  
   A. Sigma-Delta (Delta-Sigma) ADCs 295  
   B. Quadrature Techniques 297  
   C. Bandpass Sampling (Digital Down Conversion) 298  
   D. DAC Tradeoffs 300  

III. SDR Applications 301  
   A. Conversion Rate, Dynamic Range, and Applications 301  
   B. ADC Product Evolution 302  
   C. Low-Power Wireless Applications 303  
   D. Digital RF 303  

IV. ADC Design Rules 305  
   A. Linearity 305  
   B. Measuring SNR 306  
   C. Noise Floor Matching 307  
   D. Figure of Merit 308  
   E. Technology Insertion 308  
   F. Architecture Implications 310  

V. Exercises 310  

10 Digital Processing Tradeoffs 312  

I. Metrics 312  
II. Heterogeneous Multiprocessing Hardware 316  
   A. Hardware Classes 316  
   B. Digital Interconnect 317
III. Applications-Specific Integrated Circuits (ASICs) 321  
A. Digital Filter ASICs 321  
B. Forward Error Control (FEC) ASICs 323  
C. Transceiver ASICs 324  
D. Architecture Implications 326  
IV. Field-Programmable Gate Arrays (FPGAs) 329  
A. Introduction to FPGAs 329  
B. Reconfigurable Hardware Platforms 330  
C. FPGA-DSP Architecture Tradeoffs 331  
D. Table-Driven Signal Generation 332  
E. Evolutionary Design of FPGA Functions 333  
F. Architecture Implications 334  
V. DSP Architectures 336  
A. DSP Cores for Wireless 336  
B. Basic DSP: The TMS320C30 337  
C. Increasing Interconnect Capacity: The C40 and SHARC 338  
D. Size–Power Tradeoffs: The C54x, and Motorola Chips 339  
E. Toward Greater Parallelism: The C80 and C6xx 339  
F. Summary and Comparison of Contemporary Chips 339  
G. Potential Technology Limits 341  
VI. INFOSEC Processor Architectures 342  
A. The Clipper Chip—Key Escrow Approach 342  
B. Programmable INFOSEC Modules 342  
VII. Host Processors 343  
VIII. Architecture Implications 343  
IX. Exercises 345  

11 Software Architecture Tradeoffs 347  
I. The Software Design Process 347  
II. Top-Down, Object-Oriented Design 348  
A. Object-Oriented Design for SDR 348  
B. Defining Software Objects 352  
C. Architecture Implications 358  
III. Software Architecture Analysis 359  
A. SDR Software Architecture 359  
B. SPEAKEasy I Software Architecture 360  
C. Characteristics of Top-Level Objects 361  
D. Specialized Tasks 362  
E. SPEAKEasy II Code 363
CONTENTS

IV. Infrastructure Software 363
   A. Control Flows 365
   B. Signal Flows 365
   C. Standardizing Flows 365
   D. CORBA 368
   E. Timing, Frequency, and Positioning 371
   F. Resource Management 373

V. SDR State Machines 374
   A. Finite State Automata 374
   B. Push-Down Automata 375
   C. Channel-Control State Machines 375
   D. Agent State Machines 376

VI. Architecture Implications 377
   A. Communications Services Layer 377
   B. Radio Applications Layer 378
   C. Infrastructure Layer 380
   D. Hardware Platform Layer 381

VII. Exercises 382

12 Software Component Characteristics 384

I. Hardware-Software Interfaces 384
   A. DSP Extensions 385
   B. Execution Timing 388
   C. Aggregate Software Performance 390

II. Front-End Processing Software 392
   A. Spectrum Management 394
   B. Spectrum Monitoring 396

III. Modem Software 400
   A. Modem Complexity 400
   B. SPEAKeasy II API 400
   C. Modulation/Demodulation Techniques 401
   D. Synchronization 412
   E. Equalizer Complexity 413
   F. Demodulation Decisions 414
   G. Forward Error Control (FEC) 416
   H. Error Protection Complexity Tradeoffs 418
   I. Multiple Data Rates 419
   J. Link-Level Complexity Drivers 421

IV. Bitstream Processing Software 422

V. INFOSEC Software 423

VI. Internetworking Software 423
   A. Open Systems Interconnect Protocol Stack 424
13 Performance Management

I. Overview of Performance Management 437
   A. Conformable Measures of Demand and Capacity 437
   B. Initial Demand Estimates 438
   C. Facility Utilization Accurately Predicts Performance 440

II. Performance Management Process Flow 442

III. Estimating Processing Demand 444
   A. Pseudocode Example—T1 Multiplexer 444
   B. Quantified Objects 448
   C. Thread Analysis and Object Load Factors 450
   D. Using the Resource Management Spreadsheet 453

IV. Benchmarking Applications 454
   A. The GSM Base Station 454
   B. Benchmarking Partial Interference Cancellation Receivers 456
   C. Benchmarking Handsets 458

V. Specifying Performance Parameters 459
   A. Facility Utilization 459
   B. Response Time Estimation 462
   C. Throughput Estimation: How Much Hardware? 463
   D. Probability of Exceeding Specifications 464

VI. Architecture Implications 466

VII. Exercises 466

14 Smart Antennas

I. Smart Antenna Domains 467
II. Multibeam Arrays 468
III. Adaptive Spatial Nulling 470
   A. Algorithm Operation 472
   B. Beamforming Algorithm Complexity 475
CONTENTS

IV. Space-Time Adaptive Processing 475
V. Architecture Implications 477
   A. Smart Antenna Components 478
   B. Design Rules 479
VI. Exercises 480

15 Applications 482
   I. The Design Process 482
   II. The Disaster-Relief System Design 483
      A. FEMA Concept of Operations (CONOPS) 484
      B. Requirements Analysis 486
      C. System Description 488
      D. Illustrative Design 489
   III. Architecture Implications 491
   IV. Exercises 491

16 Reference Architecture 493

References 495

Glossary 515

Index 533
PREFACE

The purpose of this text is to show how to integrate the analog RF and digital aspects of radio with the rapidly emerging large-scale object-oriented software technology needed for open-architecture software-defined radio (SDR).

This is therefore a systems engineering text. It is not a design text. This book will not help you design a better filter for a specific SDR. It will, however, help you make better decisions about how to partition the end-to-end system filtering requirements. It will help you allocate the critical functions of dynamic range and processing capacity in such a way that the filter’s design constraints are well founded and that the hardware platform, firmware, and software support the filtering requirements of the software radio. This book will also give you quantitative criteria for deciding whether to host that filter in an analog package, digitally on an applications-specific integrated circuit (ASIC), or in software on the latest digital signal processing (DSP) chip. In addition, if the filter is to be implemented in software, this book will give you the skills to ensure that the software is well structured and performs robustly—even when many tasks are competing for processing resources. The appropriate host for such a filter changes over time. Commercial filter ASICs may become obsolete as DSP processing capacity increases, changing the systems-level tradeoffs. As needs, technology, and team expertise evolve, the effective choice will also change. The effective choice also changes as a function of the top-down design constraints placed on the radio system by the economics of the marketplace and by the larger systems architecture. And the effective choice may be to not implement the filter per se at all, but to procure it as part of an off-the-shelf subsystem. As we migrate to systems on a chip, this means the filter may entail intellectual property that has to be partitioned and protected, and yet has to be leveraged by the rest of the system. A sound systems-level architecture facilitates this process, while an inferior architecture inhibits it. The reduced time to market and cost efficiency of such buy-versus-make choices also require balancing the capabilities and design constraints given competing technical and economic constraints.

Software-radio is therefore an interdisciplinary technology, so this is an interdisciplinary text. The radio-oriented chapters are written for people with strong software background but little background in radio engineering. Software radio is about wideband radio frequency (RF) hardware that is given its “personality” by software. Therefore, the software people have to understand the RF hardware and air interface standards to the degree set forth in this
text in order to function effectively on an interdisciplinary team. Similarly, the software-oriented chapters are written for people with strong background in RF, analog radio, or DSP but little background with large-scale software. And software radio is increasingly about complex, large-scale software. One of the revolutionary aspects of software radio is that knowing how to code a radio algorithm in C on a DSP just doesn’t give a software engineer the core skills needed to contribute effectively to software radio architecture. In fact, that experience becomes a liability if it causes one to minimize the importance of the new large-scale software engineering methods like CORBA.

In addition, European readers will have to be patient with the tutorial material on SDL, the ITU-standard Specification and Description Language. In teaching the software radios course on which this book is based, I have found that US engineers make little use of formal methods for specifying radio functions. ETSI’s emphasis on formal methods and the widespread use of SDL in support of European standards-setting process has not reached across the Atlantic yet. As a result, U.S. practitioners of radio engineering often try to do with pencil and paper what their European counterparts do on a computer—define new air interface standards. This text’s treatment of UML extends the SDL material.

This text has several companions. The first is the Special Issue of the IEEE Journal on Selected Areas in Communication on Software Radios (JSAC), published in April 1999 by the IEEE (New York). This JSAC is a surrogate graduate-level text. As such, it addresses related graduate-level research topics including mathematical structure of the software radio, virtual radios, advanced digital filter ASICs, smart antennas, and other advanced techniques. The IEEE Press Compendium Software Radio Technology by Mitola and Zvonar extends the JSAC with both earlier and more recent technical papers. Prof. Friedrich Jondral’s course text in German (U. Karlsruhe) relates fundamental digital radio to SDR.

The dedication of this text to the “public interest” envisions the resulting affordable, robust, high-quality radio services as beneficial to the public interest. If coalition partners can cooperate better using software radios in peacekeeping roles, then that serves the public interest. If governments can acquire radio platforms at lower and more predictable cost, then that makes resources available for other public priorities. The focus of this text is the architecture. In this text, architecture is defined as the consistent set of functions, components, and design rules that promote open-architecture evolution of complex radio systems.

The book is organized for ease of access by a variety of readers. Chapters 1–3 provide the high-level background needed for a general understanding of how software radio fits in the larger telecommunications technology. Systems engineers and program managers should have a solid grasp of chapters 4 and 5 in order to lead architecture evolution. Program managers and software engineers need to pay particular attention to the discussion of complexity drivers. Like any other software-intensive project, software radios are subject to sub-
tle changes of the scope of the software. These chapters attempt to forewarn and thus forearm the team against factors that can drive software complexity and processing requirements out of the bounds of time, personnel, or processing capacity available on the project. The chapters on subsystems (6–12) focus on the requirements that software radio brings to the hardware and software segments. The software-oriented chapters are designed to be useful to hardware-oriented readers and the hardware-oriented chapters are designed to be useful to software-oriented readers. Sufficient basics on signal processing are included to provide a relatively self-contained treatment. The concluding chapters (13–16) provide examples of how to apply software radio architecture to create robust yet affordable multiband multi-mode communications systems.

I really enjoy interacting with those of you who are out there creating SDR systems and propelling the software radio evolution forward. Since you have purchased this text, you probably would like to use the knowledge you gain. A few spreadsheet design tools can help with some important aspects of that task. These are the software radio spreadsheets. You get access to them via the author’s software radios web site. The URL is http://ourworld.compuserve.com/homepages/jmitola. The site is for folks who purchased this text. By following the instructions on the site, you can get access to the design aids. I also welcome questions from readers about this text, or anything in the area of software radio technology.

Best regards,

Joe Mitola