
Embedded System Design and Modeling 
EE382V, Fall 2008 

Homework #2 
System Design Flow and System-Level Design Tools 

Assigned: September 25, 2008 
Due:       October 9, 2008 

Instructions: 

• Please submit your solutions via Blackboard. Submissions should include a single PDF 
with the writeup and an archive for any supplementary files. 

• You may discuss the problems with your classmates but make sure to submit your own 
independent and individual solutions.  

• Some questions might not have a clearly correct or wrong answer. In such cases, grading 
is based on your arguments and reasoning for arriving at a solution. 

Problem 2.1: System Design and Modeling Flow 

For this problem, we will further upgrade the parity checker example developed in Homework 1, 
Problem 1.8 to a proper specification model (conforming to the structure, rules and guidelines 
discussed in class) and then manually refine it down to computation and communication models: 

(a) Starting from the code you developed in Problem 1.8, modify the parity checker into a 
parity generator/encoder. At its input, the parity generator accepts a stream of 7-bit words 

(represented as char bytes where the MSB is not used) over a c_queue channel. At the 

output, a c_queue channel produces the stream of parity-encoded words (MSB is the 

parity bit). Furthermore, add an initialization behavior before the actual Parity 
generator that waits for an external start message and sets an internal flag to select odd or 
even parity encoding depending on a mode contained in the start message.  

Finally, enclose this design into a typical testbench setup. Modify the top level of the 

example (Main behavior) to describe a proper structure consisting of Stimulus, 

Design and Monitor behaviors:  

Design MonitorStimulus

Main

Even Ones

Init

 

The Stimulus should read the mode and the stream of input words from a file and feed 

them into the design over the input queue. The Monitor should receive the encoded 
words on the output queue and write them to an output file. Make sure that the testbench 

cleanly terminates the simulation (via an exit(0)system call) when the end of the 

streams has been reached (e.g. in the Monitor after a fixed number of words have been 

received). We will reuse this same testbench as we go through the design process. At 



EE382V: Embedded Sys Dsgn and Modeling, Homework #2  2 

every step you can then use the diff command to compare the generated output file 

with a file of known-good/golden values. 

Briefly describe if and how this specification model employs the concepts of and follows 
the guidelines for granularity, encapsulation, hierarchy, concurrency, and communication. 

(b) Assume a partitioning where Init and Even behaviors are mapped to PE1, the Ones 
behavior is mapped to PE2, and everything is statically scheduled: 

PE1

Even

Init

PE2

Ones

Bus1

 

Manually refine the specification model from (a) into a computation model where the 

Design reflects this partitioning. Insert execution delays of 30/50 time units per word in 

Even/Ones. Briefly describe the transformation steps you applied. 

(c) Assuming that Bus1 connecting PE1 (master) and PE2 (slave) uses a modified double-
handshake protocol according to the following timing diagram. In this protocol, the 
master signals the type of transaction (read or write) to the slave through an additional 
rnw (read, not write) control wire: 

rdy

ack

addr[15:0]

data[31:0]

(5, 15) (5, 25)

(10, 20) (5, 15)

rdy

ack

addr[15:0]

data[31:0]

PE1

(Master)

PE2

(Slave)

rnw

rnw

(0, 10) (5, 10) (0, 5)

 

Implement a protocol channel for this bus (with master and slave interfaces and 

corresponding masterRead/Write and slaveServeRead/Write transactions). 
Assume worst case delays. Implement both a pin-accurate and a transaction-level model 
of the bus. Manually refine the computation model from (b) down to a pin-accurate and 
transaction-level communication model of the system using and instantiating these bus 
channels (inlined into the PEs or as-is between PEs, respectively). Briefly describe the 
transformation steps you applied. Validate that both bus models produce the same 
simulated delays and try to measure and quantify the speed difference between them. 

Simulate all models to validate their correctness. Report on lines of code for each model. Turn in 
the source code for all models and all input and output test files. 



EE382V: Embedded Sys Dsgn and Modeling, Homework #2  3 

Problem 2.2: System-On-Chip Environment (SCE) 

The goal of this problem is to make you familiar with the System-On-Chip Environment (SCE) 
by going through the tutorial that demonstrates SCE on the GSM Vocoder design example 
introduced in class. The tutorial instructions are available as part of the SCE installation (see 
below) and online at: 

http://www.cecs.uci.edu/~cad/publications/tech-reports/2003/TR-03-41.tutorial.pdf  
Note, however, that the tutorial is based on an older version of SCE. As such, some steps have 
changed and communication design steps have been expanded. A list of errata with all modified 
and added tutorial steps necessary for the current SCE version is available on the class website: 

http://www.ece.utexas.edu/~gerstl/ee382Vf08/docs/SCE_Tutorial_Errata.pdf  

SCE is installed next to the SpecC tools on the ECE LRC Linux servers. Instructions for 
accessing and setting up SCE and the tutorial are posted on the class website: 

http://www.ece.utexas.edu/~gerstl/ee382Vf08/docs/SCE_setup.pdf  

Again, once logged in (e.g. remotely via ssh –X and make sure to have an X11 server running 

locally), you need to run the provided setup script (depending on your $SHELL): 
source /home/projects/courses/…/sce-20080601/bin/setup.{c}sh 

Next, setup a local working directory for the tutorial demo, launch the SCE GUI and follow the 
steps of the tutorial: 

mkdir demo 
cd demo 
setup_demo 
ls 
acroread SCE_Tutorial/sce-tutorial.pdf & 

(or point your web browser to SCE_Tutorial/html/) 
acroread $SPECC/doc/SCE_Tutorial_Errata.pdf & 
sce 

Read and go through the tutorial up to and including Section 3 (you are free to venture into HW 
and SW synthesis steps but those have not been tested and are not required at this point; use at 
your own risk but if you do, we’d be happy to hear about any successes/failures). Make sure to 
simulate all the generated models and generate both a TLM and a PAM in the final 
Communication Synthesis step.  

Report on model complexities (File→Statistics), simulation times and simulated encoding 
delays (maximum/worst-case delay over all frames) after each design step. Hint: To have 
simulation times reported after each simulation run, go to Project→Settings→Simulator and 

prepend /usr/bin/time in front of the Simulation Command. 

Problem 2.3: Exploration and Refinement 

In this problem, we will take the parity encoder/generator example from Problem 2.1 and run it 
through the SCE exploration and refinement process: 

(a) Go into your working directory for the new parity example from Problem 2.1(a), launch 

sce and import the complete specification model (tb.sc) into SCE. Create a new 

project, add the parity specification model to it and rename it (e.g. to spec.sir). 
Simulate and profile the model. Which behavior is the most computation intensive (and 
why)? Which behavior is the most communication-intensive (and why)? 



EE382V: Embedded Sys Dsgn and Modeling, Homework #2  4 

(b) Set the Design behavior as the top-level in SCE, allocate the same 

Motorola_DSP56600 processor (using default parameters) and HW_Standard custom 
hardware unit that were used in the Vocoder tutorial, and explore the following system 
platforms: 

i. Pure software solution with everything running on the DSP. 

ii. Software on the DSP with Ones mapped to the HW unit. 

iii. HW/SW solution with the internal mode flag memory-mapped into HW (to allow 
mapping of variables make sure to enable Synthesis→Show Variables).  

Evaluate and report the design quality metrics for each platform. Refine all platforms 
down to their communication models and simulate all models to validate their correctness. 
Document, compare and contrast all design decisions that were made and are necessary in 

each case. Submit the SpecC/PSM charts of the system Design (Right-Click→Chart, 

show the structural hierarchy by enabling View→Connectivity, single level of hierarchy 
only) for all platforms at the architecture/computation and the communication levels.  

(c) Browse the hierarchy (View→Chart) and source (View→Source) of the generated 
models. For (b)i, take a look at the model of the DSP processor that SCE inserts. Can you 
identify the model of the interrupt controller, the modeling of processor suspension and 
interrupt handling in the processor core, and the OS model? For (b)ii, compare the 
generated models to the manually refined ones you developed in Problem 2.1(b) and 
2.1(c). Other than the processor model, what differences can you make out? For (b)iii, 
look at the code in the leaf behaviors. What has changed (and why)? Can you find the 
instance of the mode flag variable in the architecture model (where did it end up)? 

 
 


