
Embedded System Design and Modeling
EE382V, Fall 2009

Lab #2
SpecC Conversion

Due: October 1, 2009 in class (3:30pm)

Instructions:
 Please submit your solutions via Blackboard. Submissions should include a single PDF

with the lab report and a single Zip or Tar archive with the source files.
 You are allowed to work in teams of up to three people and you are free to switch

partners between labs and the project. Please submit one solution per team.

SpecC Model of Design Example

The purpose of this lab is to convert the JPEG Encoder reference code into an initial SpecC
model of the digital camera with proper behavioral and structural hierarchy. Starting from the
simplified, static code developed as a result of Lab #1:

/home/projects/courses/fall_09/ee382v-17220/jpegencoder1.tar.gz
we will gradually convert <name>.c/.h C files into <name>.sc/.sir SpecC modules. In the
process, each module gets translated into one or more SpecC behaviors, which can then be
hierarchically imported and composed into an overall design:

1. Convert read.c, dct.c, quantize.c, zigzag.c and huffencode.c into corresponding .sc files.
Introduce a single behavior of appropriate name in each file. Let the behavior encapsulate
all local variables and functions (i.e. files must not have any variables or functions
outside of behaviors). Convert the externally accessible function listed in the .h file into
the behavior’s main method and replace parameters with equivalent behavior ports for
external communication. Ensure that behaviors are free of side effects, i.e. that they only
communicate with other behaviors through their ports and do not access any global
variables outside of their body.

2. Convert preshift, chendct and bound methods in dct.sc into separate behaviors and
transform the Dct behavior into a sequential composition of these subbehaviors. Connect
child behaviors to communicate through variables mapped onto their ports.

3. Introduce a new behavior and file huff.sc that implements the sequential composition of
(imported) Zigzag and Huffencode child behaviors. Connect behavior ports to appropriate
external ports or local variables throughout the hierarchy.

4. Convert ReadBmp_aux.c and file.c into .sc files that implement Stimulus and Monitor
behaviors for the testbench, respectively. The Stimulus behavior reads the input file into a
shared ScanBuffer port (ReadBmp) and then sends a start signal over a c_handshake
channel. The Monitor reads bytes from a c_queue interface and writes them into an
output file (FileWrite) continuously, one byte at a time until the end-of-file marker is
reached.

5. Convert jpegencoder.c into a jpegencoder.sc file and behavior that first waits for a start
signal via a c_handshake interface and then executes ReadBlock, Dct, Quantize and Huff
child behaviors sequentially in a loop. Let child behaviors communicate through
variables mapped onto their ports and introduce external ports and mappings as necessary.

EE382V: Embedded Sys Dsgn and Modeling, Lab #2 2

6. Introduce a top-level digicam.sc file that contains the Main behavior implementing a
typical testbench setup running Stimulus, JpegEncoder and Monitor subbehaviors
concurrently:

JpegEncoder Monitor

FileWrite()

Stimulus

ReadBmp()

Main

Quant

Read

S
ca

nB
uf

fe
r

Dct

Huff

The Stimulus is connected to the JpegEncoder through a shared ScanBuffer variable
representing the CCD sensor array. In addition, a c_handshake channel represents the
signal that the camera shutter has been triggered and that encoding of the CCD sensor
picture should be started. At the other end, the Monitor receives a stream of encoded
bytes from the Huffman encoder (Huffencode) through a c_queue representing the file
I/O interface.

7. Remove the .h files and compile all .sc sources into .sir files and check for compile errors.
Finally, compile the top-level digicam.sc source into an executable and simulate the
design. Validate the generated output against the known good data to ensure the design is
working correctly. Note: it is highly recommended to update the Makefile in order to
automate the compilation process using the make utility.

Briefly report on how the resulting model employs the concepts of and follows the guidelines for
granularity, encapsulation, hierarchy, concurrency, and communication. Describe if and how this
model could be improved in any of these aspects.

	SpecC Model of Design Example

