
Embedded System Design and Modeling
EE382V, Fall 2009

Lab #3
Specification

Due: October 22, 2009 in class (3:30pm)

Instructions:
 Please submit your solutions via Blackboard. Submissions should include a single PDF

with the lab report and a single Zip or Tar archive with the source files.
 You are allowed to work in teams of up to three people and you are free to switch

partners between labs and the project. Please submit one solution per team.

Part 1: Digital Camera Specification Model

The purpose of this lab is to finalize the SpecC model of the digital camera example into a clean
specification model that conforms to the structure, rules and guidelines discussed in class. We
start from the SpecC code developed as a result of Lab #2:
/home/projects/courses/fall_09/ee382v-17220/jpegencoder2.tar.gz

1. Insert timing checks into the testbench. Update Stimulus in connection with Monitor to
print the total delay required for encoding of each single picture. Compile and simulate
the model to check timing info is printed correctly (delays should be zero at this point).

2. Develop an accurate model of the actual I/O structure for the digital camera. Move the
ReadBlock behavior outside of the JpegEncoder, move the waiting for the start signal
ReadBlock and modify ReadBlock to independently loop over all blocks in a picture and
send them over its outgoing queue after the start signal has been received. Introduce a
WriteBlock behavior (write.sc) that continuously reads bytes from a queue and forwards
them into an outgoing double-handshake channel. Introduce an additional level of
hierarchy as a Design behavior (design.sc) that sits between Monitor and Stimulus and is
a parallel composition of ReadBlock, JpegEncoder and WriteBlock instances
communicating via c_queue channels:

Design Monitor

FileWrite()

Stimulus

ReadBmp()

Main

S
ca

nB
uf

fe
r

Jpeg WriteRead

3. Convert the JpegEncoder into a parallelized KPN-style model. Remove the ReadBlock
instance and change the top-level JpegEncoder execution into a single par statement in
which the three remaining child behaviors communicate via c_typed_queue channels. An
example and tutorial for use of typed queues can be found at:

$SPECC/examples/sync/c_bit64_queue.sc
$SPECC/examples/sync/typed_queue.sc

EE382V: Embedded Sys Dsgn and Modeling, Lab #3 2

Modify Dct, Quantize and Huff to work on continuous streams of input and output data
over c_int64_queue channels. Change the sequential sub-composition inside Dct and Huff
behaviors into an fsm that runs child behaviors sequentially in an endless loop. Introduce
an additional level of hierarchy in quantize.sc as a behavior Quant that runs Quantize in
an endlessly looping fsm. Replace the top-level Quantize instance in JpegEncoder with
Quant.

4. Compile and simulate the whole design to validate its correctness.

Part 2: System-On-Chip Environment (SCE)

The goal of this part is to make you familiar with the System-On-Chip Environment (SCE) by
going through the first part of the tutorial that demonstrates SCE’s system specification and
analysis capabilities on a GSM Vocoder design example. The tutorial instructions are available
as part of the SCE installation (see below) and online at:

http://www.cecs.uci.edu/~cad/publications/tech-reports/2003/TR-03-41.tutorial.pdf
Note, however, that the tutorial is based on an older version of SCE. As such, some steps have
changed and communication design steps have been expanded. A list of errata with all modified
and added tutorial steps necessary for the current SCE version is available on the class website:

http://www.ece.utexas.edu/~gerstl/ee382v_f09/docs/SCE_Tutorial_Errata.pdf

SCE is installed next to the SpecC tools on the ECE LRC Linux servers. Instructions for
accessing and setting up SCE and the tutorial are posted on the class website:

http://www.ece.utexas.edu/~gerstl/ee382v_f09/docs/SCE_setup.pdf
Again, once logged in (e.g. remotely via ssh –X and make sure to have an X11 server running
locally), you need to run the provided setup script (depending on your $SHELL):

source /home/projects/gerstl/sce-20080601/bin/setup.{c}sh

Next, setup a local working directory for the tutorial demo, launch the SCE GUI and follow the
steps of the tutorial:

mkdir demo
cd demo
setup_demo
acroread SCE_Tutorial/sce-tutorial.pdf &

(or point your web browser to SCE_Tutorial/html/)
acroread $SPECC/doc/SCE_Tutorial_Errata.pdf &
sce

Read and go through the tutorial up to and including Section 2 (we will go through additional
tutorial steps in a later lab).

Part 3: Digital Camera Analysis

We are now ready to load the digital camera specification model into SCE and start the analysis
and exploration process:

1. Open SCE in the digital camera directory and create a new project “digicam.sce”
(Project→New, Project→SaveAs…). Adjust the simulator and compiler options
as needed. Set the simulation command to

./%e && diff –s test.jpg goldgen.jpg
Set the compiler verbosity level to 3 and the warning level to 2.

http://www.cecs.uci.edu/%7Ecad/publications/tech-reports/2003/TR-03-41.tutorial.pdf
http://www.ece.utexas.edu/%7Egerstl/ee382v_f09/docs/SCE_Tutorial_Errata.pdf
http://www.ece.utexas.edu/%7Egerstl/ee382v_f09/docs/SCE_setup.pdf

EE382V: Embedded Sys Dsgn and Modeling, Lab #3 3

2. Import the digicam.sc specification model into SCE and add it to the project. Rename the
model in the project window to DigicamSpec.

3. Compile and simulate the model to validate its correctness.

4. Browse the graphical hierarchy chart. Expose all levels of hierarchy and submit a printout
of the chart of the complete specification model (Window→Print… to file
DigicamSpec.ps).

5. Profile the model and generate the bar graph for the Computation profile of behaviors in
the JpegEncoder part of the design. Submit a printout of the computation graph
(Window→Print… to file DigicamSpecProfile.ps).

6. Submit all source, SIR, project and Postscript files. Report on the relative computational
complexity of different JPEG encoder blocks. Briefly describe some possible
implementation options and opportunities for optimization in design space exploration.

	Part 1: Digital Camera Specification Model
	Part 2: System-On-Chip Environment (SCE)
	Part 3: Digital Camera Analysis

