
Embedded System Design and Modeling
EE382V, Fall 2009

Lab #4
Exploration and Refinement

Due: November 12, 2009 in class (3:30pm)

Instructions:
 Please submit your solutions via Blackboard. Submissions should include a single PDF

with a lab report and a single Zip or Tar archive with the source and supplementary files.
 You are allowed to work in teams of up to three people and you are free to switch

partners between labs and the project. Please submit one solution per team.

Part 1: System-On-Chip Environment (SCE)

The goal of this first part is to continue the System-On-Chip Environment (SCE) tutorial that
was started in the previous lab:

http://www.cecs.uci.edu/~cad/publications/tech-reports/2003/TR-03-41.tutorial.pdf
http://www.ece.utexas.edu/~gerstl/ee382v_f09/docs/SCE_Tutorial_Errata.pdf

Go back to your local working directory for the tutorial demo, launch the SCE GUI and follow
the steps of the tutorial in Section 3. Make sure to simulate all the generated models and generate
both a TLM and a PAM in the final Communication Synthesis step. You are free to venture into
HW and SW synthesis steps (Sections 4 and 5), but those have not been tested and are not
required at this point; use at your own risk but if you do, we’d be happy to hear about any
successes/failures.

Part 2: Digital Camera Synthesis

The main purpose of this lab is to explore the system design space and synthesize the previously
developed specification of the digital camera example down to a MPSoC implementation at the
TLM and PAM levels. We start from the SpecC code developed as a result of Lab #3:
/home/projects/courses/fall_09/ee382v-17220/jpegencoder3.tar.gz

(a) We are now ready to go through the architecture and scheduling exploration and refinement
process. The goal is to find an optimal realization on a system architecture consisting of up
to 3 ARM processors:

1. Open SCE in the digital camera directory and load the “digicam.sce” project file
created in the first lab (Project→Open). Open the “DigicamSpec.sir”
specification model added to the project in the previous lab and set the Design
behavior as the top level.

2. Allocate two custom hardware PEs of HW_Virtual type and name them CCD and
FLSH. Those two custom hardware blocks are placeholders for the controllers
implementing the I/O with the external CCD sensor and flash memory. As such,
map the ReadBlock and WriteBlock behaviors onto the CCD and FLSH PEs,
respectively. Furthermore, enable the channel view (Synthesis→Show
Channels) and map the dctin and dataout input and output queues at the Design
level into the CCD and FLSH PEs, respectively. This is necessary because we want
to have the two I/O blocks implement the dedicated input and output buffers

http://www.cecs.uci.edu/%7Ecad/publications/tech-reports/2003/TR-03-41.tutorial.pdf
http://www.ece.utexas.edu/%7Egerstl/ee382v_f09/docs/SCE_Tutorial_Errata.pdf

EE382V: Embedded Sys Dsgn and Modeling, Lab #4 2

associated with the queues. In general, mapping a complex channel into a PE means
that the channel will result in a specific implementation being synthesized as part of
that PE. Unmapped complex channels, on the other hand, will simply be resolved
into their basic elements without any guarantees about a particular buffer realization,
for example.

3. Allocate between 1 and 3 processor PEs of ARM7_TDMI type and explore possible
mapping options of JpegEncoder behaviors onto 1, 2, or 3 ARMx processors. When
allocating ARMs, use the default parameters (100MHz clock frequency). Make sure
to reprofile and reanalyze the design every time you change the allocation. Perform
architecture refinement for every feasible design alternative.

4. Explore various feasible scheduling strategies for each allocated ARM processor in
each architecture alternative. You can choose from static, round-robin and priority-
based scheduling (with various task priority assignments) of parallel behaviors
mapped to the same ARM. Note that you should not schedule (i.e. select None
under dynamic scheduling) ARM processors with only one mapped behavior (there
is a bug in SCE that prevents dynamic scheduling on more than one processor). Do
not schedule any of the hardware units. Perform scheduling refinement for every
feasible design alternative.

5. Compile and simulate all generated scheduled architecture models. Record the
simulated encoding times for each alternative and plot the design space as points in
an encoding time vs. cost (equal to # of processors) graph. What is the best design?

(b) In the next step, we can then go into network exploration and communication synthesis for
various promising architecture candidates that we identified in (a). Specifically, we want to
synthesize the best designs each with 1, 2 or 3 ARM processors down to a TLM or PAM
realization:

6. Open network allocation to define the overall network topology. Busses for each
ARM processor in the system should already be pre-allocated and ARM processors
should be pre-connected as masters on their respective busses. Connect the CCD
and FLSH hardware PEs as slaves on the same bus as the ARM processor running
their direct communication partners (i.e. Dct and Huff behaviors, respectively).
Note that “slave0” connectivity is reserved by the ARM processor itself and should
never be used. If there is more than one ARM (and hence more than one bus) in the
system, allocate transducer CEs of T_Custom type to bridge and connect busses as
necessary (where transducers are slaves on each bus they connect to). Note that
transducers by default only have one port but additional ports can be created by
right-clicking on the transducer name in the Connectivity tab and selecting Add
port….

7. Perform network refinement and make sure to select a custom packet size of 256
bytes in the process. An increased packet size will make sure that every image
block can be transferred over any transducers in a single packet (64 elements/block
times 4 bytes/integer), greatly reducing the overall communication overhead (you
can experiment with synthesizing a design with a packet size of 1 and comparing
the final encoding times).

8. Assign the link parameters for each channel on each bus. You can freely choose the
interrupt/synchronization scheme. However, due to the mux-based architecture of

EE382V: Embedded Sys Dsgn and Modeling, Lab #4 3

the ARM/AMBA AHB bus being used, addresses need to be assigned to match the
slave connectivity. Specifically, channels served by a particular “slaveN” have to be
assigned a bus address in the range between 0xN0000000-0xNfffffff
(otherwise, you will see a deadlock in the PAM simulation).

9. Perform communication refinement to generate both a transaction-level and pin-
accurate model of each design. Compile and simulate each model to record the final
encoding delays. How much percent communication overhead does each design
have?

(c) In a final step, we will create a mixed HW/SW system design with a hardware-accelerated
DCT. We will synthesize this design all the way down to binary object code for the
software running on top of an uCOS-II real-time operating system (RTOS) in an ARM
instruction set simulator (ISS) that is co-simulated with the other digital camera hardware:

1. For software synthesis to work, we need to replace the c_int64_queues inside the
JpegEncoder with untyped c_double_handshake channels (software code
generation currently does not support queue synthesis). You can do the conversion
yourself or use the pre-prepared “jpecencoder3.tar.gz” master solution from above.
For the latter, running

make clean
make DEFINES=-DSW_SYNTH

will compile a version of “digicam.sir” with the required changes.

2. Load the modified digital camera specification “digicam.sir” into SCE, add it to the
project and rename it to “DigicamSystemSpec.sir”. Select Design as top level.

3. Allocate and map CCD and FLSH PEs as before. Allocate a single ARM PE and
map the JpegEncoder onto the ARM. Allocate a custom hardware PE of
HW_Standard type and map the Dct behavior onto it. Compile, simulate, profile
and analyze the design. Perform architecture refinement.

4. Apply priority-based scheduling on the ARM and assign priorities 1 and 2 to Quant
and Huff, respectively. Do not schedule any of the CCD, FLSH or DCT PEs.
Perform scheduling refinement and compile and simulate the design.

5. Open network allocation, rename Bus0 to AHB and connect the CCD and FLSH as
“slave2” and “slave3” to the AHB. Connect the DCT as bus-mastering hardware
(“master1 & slave1”) to the AHB. The DCT needs to be both bus master and slave
such that it can communicate with both the ARM (which is a “master0”) and the
CCD (which is a “slave2”). Alternatively, you can make the DCT a slave-only on
the AHB and allocate a separate DblHndShkBus as a point-to-point connection
between CCD and DCT (adding separate ports as necessary). In either case, perform
network refinement and compile and simulate the design to validate that it works
correctly.

6. Assign link parameters on the AHB bus such that channels connecting to CCD map
to address 0x200000xx, channels connecting to FLSH map to 0x300000xx,
and channels between DCT and ARM map to address 0x100000xx. Assign unique
or shared interrupts to each channel (do not choose polling). Perform
communication refinement to generate a PAM. Compile and simulate the PAM.
How does the performance of the design compare to the ones created under (b)?

EE382V: Embedded Sys Dsgn and Modeling, Lab #4 4

7. Due to a bug in the GUI we need to patch the PAM to attach an additional
annotation for software synthesis to work. Go to the command line and run the
following command:
sir_note <pam_name> ARM_7TDMI_Core_20000_0_<arm_name>

'_PE_HAL_MODEL="ARM_7TDMI_HAL_20000_0_<arm_name>"'
where <pam_name> is the design name of the PAM file and <arm_name> is the
name of the ARM processor assigned during allocation (e.g. ARM).

8. Reload the PAM in SCE and select Synthesis→C Code Generation .
Choose output files “ARM/ARM.c” and “ARM/ARM.h” and run the refinement
process.

9. The master “jpegencoder3.tar.gz” tarball comes with an “ARM/Makefile” for cross-
compiling the generated ARM source code and linking it against the ARM-ported
uCOS-II and other runtime libraries on the LRC machines. If it is not already there,
copy that “Makefile” into the ARM subdirectory next to the generated code,
compile the code and copy the generated ARM executable into the SCE project
directory:

cd ARM
make
cp userCode ..

10. In the last step, we need to insert the ISS model for the ARM into the PAM and
replace the SCE-generated ARM model with the ISS version. Open the PAM in
SCE, select Edit→Import Design and choose and import the file
“$SPECC/share/sce/db/processors/general/arm7tdmiiss.sir”. Locate the ARM
instance under the top-level Design, right-click it and Change Type to
ARM_7TDMI_ISS. Save the design as a new model (File→Save As…) in the
project directory. Compile and simulate the design. You might see some IRQ
messages flying by as the ISS is running but in the end the simulation should stop
after some time when the picture is encoded. Compare the final encoding time to
the previous PAM simulation result, how much differences are there?

11. Congratulations, we achieved a full-system co-simulation of the actual target
software binary together with its surrounding hardware for the complete SoC!

	Part 1: System-On-Chip Environment (SCE)
	Part 2: Digital Camera Synthesis

