
Embedded System Design and Modeling 
EE382V, Fall 2009 

Lab #4 
Exploration and Refinement 

Due: November 12, 2009 in class (3:30pm) 

Instructions: 
 Please submit your solutions via Blackboard. Submissions should include a single PDF 

with a lab report and a single Zip or Tar archive with the source and supplementary files. 
 You are allowed to work in teams of up to three people and you are free to switch 

partners between labs and the project. Please submit one solution per team. 
 

Part 1: System-On-Chip Environment (SCE) 

The goal of this first part is to continue the System-On-Chip Environment (SCE) tutorial that 
was started in the previous lab: 

http://www.cecs.uci.edu/~cad/publications/tech-reports/2003/TR-03-41.tutorial.pdf  
http://www.ece.utexas.edu/~gerstl/ee382v_f09/docs/SCE_Tutorial_Errata.pdf  

Go back to your local working directory for the tutorial demo, launch the SCE GUI and follow 
the steps of the tutorial in Section 3. Make sure to simulate all the generated models and generate 
both a TLM and a PAM in the final Communication Synthesis step. You are free to venture into 
HW and SW synthesis steps (Sections 4 and 5), but those have not been tested and are not 
required at this point; use at your own risk but if you do, we’d be happy to hear about any 
successes/failures.  

Part 2: Digital Camera Synthesis 

The main purpose of this lab is to explore the system design space and synthesize the previously 
developed specification of the digital camera example down to a MPSoC implementation at the 
TLM and PAM levels. We start from the SpecC code developed as a result of Lab #3: 
/home/projects/courses/fall_09/ee382v-17220/jpegencoder3.tar.gz 

(a) We are now ready to go through the architecture and scheduling exploration and refinement 
process. The goal is to find an optimal realization on a system architecture consisting of up 
to 3 ARM processors: 

1. Open SCE in the digital camera directory and load the “digicam.sce” project file 
created in the first lab (Project→Open). Open the “DigicamSpec.sir” 
specification model added to the project in the previous lab and set the Design 
behavior as the top level. 

2. Allocate two custom hardware PEs of HW_Virtual type and name them CCD and 
FLSH. Those two custom hardware blocks are placeholders for the controllers 
implementing the I/O with the external CCD sensor and flash memory. As such, 
map the ReadBlock and WriteBlock behaviors onto the CCD and FLSH PEs, 
respectively. Furthermore, enable the channel view (Synthesis→Show 
Channels) and map the dctin and dataout input and output queues at the Design 
level into the CCD and FLSH PEs, respectively. This is necessary because we want 
to have the two I/O blocks implement the dedicated input and output buffers 

http://www.cecs.uci.edu/%7Ecad/publications/tech-reports/2003/TR-03-41.tutorial.pdf
http://www.ece.utexas.edu/%7Egerstl/ee382v_f09/docs/SCE_Tutorial_Errata.pdf
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associated with the queues. In general, mapping a complex channel into a PE means 
that the channel will result in a specific implementation being synthesized as part of 
that PE. Unmapped complex channels, on the other hand, will simply be resolved 
into their basic elements without any guarantees about a particular buffer realization, 
for example. 

3. Allocate between 1 and 3 processor PEs of ARM7_TDMI type and explore possible 
mapping options of JpegEncoder behaviors onto 1, 2, or 3 ARMx processors. When 
allocating ARMs, use the default parameters (100MHz clock frequency). Make sure 
to reprofile and reanalyze the design every time you change the allocation. Perform 
architecture refinement for every feasible design alternative. 

4. Explore various feasible scheduling strategies for each allocated ARM processor in 
each architecture alternative. You can choose from static, round-robin and priority-
based scheduling (with various task priority assignments) of parallel behaviors 
mapped to the same ARM. Note that you should not schedule (i.e. select None 
under dynamic scheduling) ARM processors with only one mapped behavior (there 
is a bug in SCE that prevents dynamic scheduling on more than one processor). Do 
not schedule any of the hardware units. Perform scheduling refinement for every 
feasible design alternative. 

5. Compile and simulate all generated scheduled architecture models. Record the 
simulated encoding times for each alternative and plot the design space as points in 
an encoding time vs. cost (equal to # of processors) graph. What is the best design? 

(b) In the next step, we can then go into network exploration and communication synthesis for 
various promising architecture candidates that we identified in (a). Specifically, we want to 
synthesize the best designs each with 1, 2 or 3 ARM processors down to a TLM or PAM 
realization: 

6. Open network allocation to define the overall network topology. Busses for each 
ARM processor in the system should already be pre-allocated and ARM processors 
should be pre-connected as masters on their respective busses. Connect the CCD 
and FLSH hardware PEs as slaves on the same bus as the ARM processor running 
their direct communication partners (i.e. Dct and Huff behaviors, respectively). 
Note that “slave0” connectivity is reserved by the ARM processor itself and should 
never be used. If there is more than one ARM (and hence more than one bus) in the 
system, allocate transducer CEs of T_Custom type to bridge and connect busses as 
necessary (where transducers are slaves on each bus they connect to). Note that 
transducers by default only have one port but additional ports can be created by 
right-clicking on the transducer name in the Connectivity tab and selecting Add 
port…. 

7. Perform network refinement and make sure to select a custom packet size of 256 
bytes in the process. An increased packet size will make sure that every image 
block can be transferred over any transducers in a single packet (64 elements/block 
times 4 bytes/integer), greatly reducing the overall communication overhead (you 
can experiment with synthesizing a design with a packet size of 1 and comparing 
the final encoding times). 

8. Assign the link parameters for each channel on each bus. You can freely choose the 
interrupt/synchronization scheme. However, due to the mux-based architecture of 
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the ARM/AMBA AHB bus being used, addresses need to be assigned to match the 
slave connectivity. Specifically, channels served by a particular “slaveN” have to be 
assigned a bus address in the range between 0xN0000000-0xNfffffff 
(otherwise, you will see a deadlock in the PAM simulation). 

9. Perform communication refinement to generate both a transaction-level and pin-
accurate model of each design. Compile and simulate each model to record the final 
encoding delays. How much percent communication overhead does each design 
have? 

(c) In a final step, we will create a mixed HW/SW system design with a hardware-accelerated 
DCT. We will synthesize this design all the way down to binary object code for the 
software running on top of an uCOS-II real-time operating system (RTOS) in an ARM 
instruction set simulator (ISS) that is co-simulated with the other digital camera hardware: 

1. For software synthesis to work, we need to replace the c_int64_queues inside the 
JpegEncoder with untyped c_double_handshake channels (software code 
generation currently does not support queue synthesis). You can do the conversion 
yourself or use the pre-prepared “jpecencoder3.tar.gz” master solution from above. 
For the latter, running 

make clean 
make DEFINES=-DSW_SYNTH 

will compile a version of “digicam.sir” with the required changes. 

2. Load the modified digital camera specification “digicam.sir” into SCE, add it to the 
project and rename it to “DigicamSystemSpec.sir”. Select Design as top level. 

3. Allocate and map CCD and FLSH PEs as before. Allocate a single ARM PE and 
map the JpegEncoder onto the ARM. Allocate a custom hardware PE of 
HW_Standard type and map the Dct behavior onto it. Compile, simulate, profile 
and analyze the design. Perform architecture refinement.  

4. Apply priority-based scheduling on the ARM and assign priorities 1 and 2 to Quant 
and Huff, respectively. Do not schedule any of the CCD, FLSH or DCT PEs. 
Perform scheduling refinement and compile and simulate the design. 

5. Open network allocation, rename Bus0 to AHB and connect the CCD and FLSH as 
“slave2” and “slave3” to the AHB. Connect the DCT as bus-mastering hardware 
(“master1 & slave1”) to the AHB. The DCT needs to be both bus master and slave 
such that it can communicate with both the ARM (which is a “master0”) and the 
CCD (which is a “slave2”). Alternatively, you can make the DCT a slave-only on 
the AHB and allocate a separate DblHndShkBus as a point-to-point connection 
between CCD and DCT (adding separate ports as necessary). In either case, perform 
network refinement and compile and simulate the design to validate that it works 
correctly. 

6. Assign link parameters on the AHB bus such that channels connecting to CCD map 
to address 0x200000xx, channels connecting to FLSH map to 0x300000xx, 
and channels between DCT and ARM map to address 0x100000xx. Assign unique 
or shared interrupts to each channel (do not choose polling). Perform 
communication refinement to generate a PAM. Compile and simulate the PAM. 
How does the performance of the design compare to the ones created under (b)? 
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7. Due to a bug in the GUI we need to patch the PAM to attach an additional 
annotation for software synthesis to work. Go to the command line and run the 
following command:  
sir_note <pam_name> ARM_7TDMI_Core_20000_0_<arm_name> 

'_PE_HAL_MODEL="ARM_7TDMI_HAL_20000_0_<arm_name>"' 
where <pam_name> is the design name of the PAM file and <arm_name> is the 
name of the ARM processor assigned during allocation (e.g. ARM). 

8. Reload the PAM in SCE and select Synthesis→C Code Generation . 
Choose output files “ARM/ARM.c” and “ARM/ARM.h” and run the refinement 
process. 

9. The master “jpegencoder3.tar.gz” tarball comes with an “ARM/Makefile” for cross-
compiling the generated ARM source code and linking it against the ARM-ported 
uCOS-II and other runtime libraries on the LRC machines. If it is not already there, 
copy that “Makefile” into the ARM subdirectory next to the generated code, 
compile the code and copy the generated ARM executable into the SCE project 
directory:  

cd ARM 
make 
cp userCode .. 

10. In the last step, we need to insert the ISS model for the ARM into the PAM and 
replace the SCE-generated ARM model with the ISS version. Open the PAM in 
SCE, select Edit→Import Design  and choose and import the file 
“$SPECC/share/sce/db/processors/general/arm7tdmiiss.sir”. Locate the ARM 
instance under the top-level Design, right-click it and Change Type  to 
ARM_7TDMI_ISS. Save the design as a new model (File→Save As…) in the 
project directory. Compile and simulate the design. You might see some IRQ 
messages flying by as the ISS is running but in the end the simulation should stop 
after some time when the picture is encoded. Compare the final encoding time to 
the previous PAM simulation result, how much differences are there? 

11. Congratulations, we achieved a full-system co-simulation of the actual target 
software binary together with its surrounding hardware for the complete SoC! 
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