Lecture 12: Outline

- System models
 - Specification model
 - Transaction-level models
 - Bus-cycle accurate model
 - Cycle-accurate model

- Modeling results
 - Accuracy vs. speed
System Design Flow

- Abstraction based on level of detail & granularity
- Computation and communication

- System design flow
 - Path from model A to model F

- Design methodology and modeling flow
 - Set of models and transformations between models

System Models

- From layers to system models…
Specification Model

- **Abstract, high-level system functionality**
 - Computation
 - Processes
 - Variables
 - Communication
 - Sync./async. message-passing
 - Memory interfaces
 - Events

Network TLM

- **Topology of communication architecture.**
 - PEs + Memories + CEs
 - Upper protocol layers inserted into PEs/CEs
 - Communication via point-to-point links
 - Synchronous packet transfers (data transfers)
 - Memory accesses (shared memory, memory-mapped I/O)
 - Events (control flow)
Protocol TLM

- Abstract component & bus structure/architecture
 - PEs + Memories + CEs + Busses
 - Communication layers down to protocol transactions
 - Communication via transaction-level channels
 - Bus protocol transactions (data transfers)
 - Synchronization events (interrupts)

Bus Cycle-Accurate Model (BCAM)

- Component & bus structure/architecture
 - PEs + Memories + CEs + Busses
 - Pin-accurate bus-functional components
 - Pin- and cycle-accurate communication
 - Bus and interrupt protocols
 - Pins and wires
Cycle-Accurate Model (CAM)

- Component & bus implementation
- PEs + Memories + CEs + Busses
- Cycle-accurate components
 - Instruction-set simulators (ISS) running final target binaries
 - RTL hardware models
 - Bus protocol state machines

Modeling Results

<table>
<thead>
<tr>
<th></th>
<th>Spec.</th>
<th>TLM (Net)</th>
<th>TLM (Prot)</th>
<th>BCAM</th>
<th>CAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation Time [s]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MP3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JPEG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GSM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Spec.</th>
<th>TLM (Net)</th>
<th>TLM (Prot)</th>
<th>BCAM</th>
<th>CAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Error [%]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MP3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JPEG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GSM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lecture 12: Summary

• Modeling of system computation and communication
 • From specification
 – System behavior, Models of Computation (MoCs)
 • To implementation
 – Layers of implementation detail
 ➢ Flow of well-defined models as basis for automated design process

• Various level of abstraction, accuracy and speed
 • Functional specification
 – Native speeds but inaccurate
 • Traditional cycle-accurate model (CAM)
 – 100% accurate but slow
 ➢ Transaction-level models (TLMs)
 ➢ Fast and accurate virtual prototyping