
Embedded System Design and Modeling
EE382V, Fall 2010

Homework #2
Specification and MoCs

Assigned: September 30, 2010
Due: October 14, 2010

Instructions:
 Please submit your solutions via Blackboard. Submissions should include a single PDF

with the writeup and a single Zip or Tar archive for any supplementary files (e.g. source
files, which has to be compilable by simply running 'make' and should include a
README with instructions for running each model).

 You may discuss the problems with your classmates but make sure to submit your own
independent and individual solutions.

 Some questions might not have a clearly correct or wrong answer. In general, grading is
based on your arguments and reasoning for arriving at a solution.

Problem 2.1: Non-determinism

(a) What is nondeterminism?

(b) How might nondeterminism arise? (give one example not discussed in class)

(c) What are the advantages and disadvantages of having nondeterminism in a language or
model, i.e. in what circumstances might it be positive/desired or negative/undesired?

(d) Is a SpecC specification model deterministic? If yes, why? If not, list possible sources of
non-determinism and how they can be avoided (i.e. how a SpecC model can be made
deterministic) (M’08)

Problem 2.2: Models of Computation and Languages

In class, we learned about the different Models of Computation (MoCs): KPN, SDF, FSM(D),
HCFSM, PSM.

(a) What is the relationship between MoCs and languages?

(b) Can SpecC support all these MoCs? If so, briefly sketch for each MoC that you think can
be supported how you would represent a corresponding model in SpecC.

Problem 2.3: Kahn Process Networks (KPN)

(a) Does Parks’ KPN scheduling algorithm always find a bounded schedule if it exists? Why
or why not?

(b) Does Parks’ algorithm always find a complete KPN schedule, if it exists? Why or why
not?

(c) Does Parks’ algorithm always find a non-terminating (free of artificial deadlocks)
schedule, if it exists? Why or why not?

EE382V: Embedded Sys Dsgn and Modeling, Homework #2 2

Problem 2.4: Dataflow Synthesis

For the SDF graph on the right:

a

b

c

d

1

2
3

2 1
1

1
3(a) Show that the graph consistent and that it has a valid schedule.

(b) List all possible minimal periodic static schedules.

(c) Find the periodic schedule with the lowest token buffer usage.
What is the minimum buffer usage?

(d) Assume each actor firing executes in one time unit. Find the schedule with the highest
throughput (output token rate, i.e. average number of firings of the output actor d per time
unit). What is the maximum throughput on a single processor?

(e) Assume the graph is scheduled on two processors where each actor executes in one time
unit on either PE and buffers are stored in a shared memory with zero communication
overhead. Find a fixed assignment of actors to PEs and a corresponding schedule that
maximizes throughput. What is the maximum throughput on two processors?

Problem 2.5: State-Machine Models of Computation

In class, we have discussed the concepts of hierarchy (OR state) and concurrency (AND state)
for reducing complexities in a HCFSM (e.g. StateCharts) model. However, both hierarchical and
concurrent FSM compositions can be converted into an equivalent plain FSM model:

(a) Derive an expression for the complexity (number of states and number of transitions) of
the equivalent plain FSM as a function of the complexity of the OR-composed FSMs.

(b) Derive an expression for the complexity (number of states and number of transitions) of
the equivalent plain FSM as a function of the complexity of the AND-composed FSMs.

Problem 2.6: Communication Refinement and Modeling

For this problem, we will further refine the parity checker from Homework 1, Problem 1.6 all the
way down to both pin-accurate and transaction-level communication models of its design. You
can start from the code for the computation model of the parity checker that you developed for
Problem 1.6(c) in Homework 1. A reference solution can be found at:

/home/projects/courses/fall_10/ee382v-16985/parity1.tar.gz

Assume an implementation in which a single Bus1 connects PE1 (master) and PE2 (slave)
through a bus protocol taken from the bus database:

PE1

Even

PE2

Ones
Bus1

M S

The source code includes an implementation of the DoubleHandshakeBus protocol that we will use
for Bus1. Pin-accurate and transaction-level database models of the bus protocol are given in the
file DblHndShkBus.sc in the bus subdirectory. Browse the bus database model and try to
understand its structure. It is easiest to start with the channel DblHndShkBus as it shows a demo
instantiation of the bus. It first defines the bus wires and a protocol-level (physical) interface each for
master (MasterDblHndShkBus) and slave (SlaveDblHndShkBus) sides, which connect to bus wires.

EE382V: Embedded Sys Dsgn and Modeling, Homework #2 3

Finally, media access (MAC) channels (named (Master|Slave)DblHndShkBusLinkAccess) show the
methods of how to access the bus. The protocol-level interface (both master and slave side) can be
exchanged with a single DblHndShkBusTLM channel (where the communication is not performed via
the wires previously instantiated, but through events as a transaction-level model).

(a) Draw the timing diagram of the pin-accurate model of the bus protocol. Draw a similar
diagram of the timing of events in the transaction-level model. Assuming that simulation
runtimes grow linearly with the number of simulated events, what is the expected
speedup per bus transaction of transaction-level vs. pin-accurate modeling? Is this an
efficient transaction-level implementation in terms of simulation performance? Give
some suggestions to improve TLM speed. Hint: have a look at references [23,24].

(b) Manually refine the computation model of the parity encoder down to a pin-accurate
model (PAM) and a transaction-level model (TLM) of the system. Use and instantiate
corresponding bus database protocol adapters or channels (inlined/instantiated adapters in
the PEs or as channel between PEs, respectively) for realization of Bus1 communication.
Briefly describe the transformation steps you applied. Simulate all models to validate
their correctness. Report on the differences in lines of code and simulation
runtimes/speed between the models. Explain the quantitative and qualitative composition
of and contributions to the simulated delays observed in each model.

Hint: To compute the lines of code for a SpecC model, you can use the sir_stats tool
that is part of the SpecC tool set. Also, to obtain simulation runtimes, you can prepend
the Unix time command in front of the simulation command line. Note, however, that
you will have to increase the time resolution by averaging over a large number of
simulation runs or a larger input test vector file.

Option for extra credit: write a faster and still equally accurate TLM, demonstrate its
efficiency and explain why your TLM is better

	Problem 2.1: Non-determinism
	Problem 2.2: Models of Computation and Languages
	Problem 2.3: Kahn Process Networks (KPN)
	Problem 2.4: Dataflow Synthesis
	Problem 2.5: State-Machine Models of Computation
	Problem 2.6: Communication Refinement and Modeling

