
Embedded System Design and Modeling
EE382V, Fall 2010

Homework #3
Communication Synthesis, SystemC

Assigned: November 4, 2010
Due: November 18, 2010

Instructions:
 Please submit your solutions via Blackboard. Submissions should include a single PDF

with the writeup and a single Zip or Tar archive for any supplementary files (e.g. source
files, which has to be compilable by simply running 'make' and should include a
README with instructions for running each model).

 You may discuss the problems with your classmates but make sure to submit your own
independent and individual solutions.

 Some questions might not have a clearly correct or wrong answer. In general, grading is
based on your arguments and reasoning for arriving at a solution.

Problem 3.1: Bus Taxonomy

We introduced in class an extremely simplified taxonomy of busses, distinguishing between
master/slave and node-based communication systems:

(a) Define the two different communication system types we have differentiated:
master/slave and node-based. Name some characteristics of each communication type
and one specific example of each communication type that has not been mentioned on the
class slide.

(b) What are the system characteristics that suggest using a master/slave-based bus system?
Briefly reason about the identified characteristics and give one specific example for an
architecture (and maybe application).

(c) What are the system characteristics that suggest using a node-based bus system? Briefly
reason about the identified characteristics and give one specific example for an
architecture (and maybe application).

Problem 3.2: Communication Primitives

We discussed synchronous and asynchronous communication at the application level:

(a) Define in your own words (1-2 sentences) synchronous communication. Show and briefly
describe the activity graph/message sequence chart between a sender and a receiver
highlighting synchronization and data transfer. Give an example of synchronous
communication used in SCE.

(b) Briefly outline an application example which benefits from synchronous communication.

(c) Briefly outline an application example which benefits from asynchronous communication
as for example implemented with the c_queue in SpecC.

EE382V: Embedded Sys Dsgn and Modeling, Homework #3 2

Problem 3.3: Communication Refinement

(d) In the platform on the right side, two PEs (PE1 and
PE2) are masters on the bus. In addition, a shared
memory is connected to the same bus via a slave
interface. The variable V1 is accessed from both
B1 (mapped to PE1) and B2 (mapped to PE2).
What are possible mapping options for V1 and why?

V1

PE1

B1

Master

PE2

B2

Master

MEM

Slave

(e) The PEs PE1 and PE2 will both be connected to
the same bus as shown on the right. As one part of
the communication refinement, complex channels
have to be mapped to processing elements. B1 and
B2 communicate through a queue. B1 sends a total
data volume of 1024k to B2. Although both
behaviors transmit the same mount of data, they differ in the granularity of the data
access. B1 writes into the channel with 128byte messages, while B2 reads individual
bytes (1byte each) out of the queue. Assume that if the queue is mapped to the same PE,
the local access is instantaneous and does not incur any bus traffic. To which processing
element should the queue be mapped in order to limit the total amount of bus traffic?
Briefly explain your reasoning.

PE1

B1

M/S

PE2

B2

M/S

queue

Problem 3.4: SystemC Modeling

The SystemC environment is installed on the ECE LRC Linux servers. Instructions for accessing
and setting up the tools are posted on the class website:

http://www.ece.utexas.edu/~gerstl/ee382v_f10/docs/SystemC_setup.pdf
In short, once logged in (e.g. remotely via ssh), you need to set the $SYSTEMC environment
variable (depending on your $SHELL):

setenv SYSTEMC /usr/local/packages/systemc-2.2.0 ([t]csh)
or

export SYSTEMC=/usr/local/packages/systemc-2.2.0 ([ba]sh)

The SystemC installation comes with a set of examples, available under
$SYSTEMC/examples. You can copy an example into a working directory:

mkdir hw3
cd hw3
cp /home/projects/gerstl/pkg/systemc-2.2.0/examples/simple_fifo/* .
ls

And then use the provided Makefile to compile and simulate the example:
make
./simple_fifo

It is recommended to inspect the sources of the example and the included Makefile to
understand SystemC compilation and simulation process, experiment with the Makefile usage
and start modifying the example to experiment with different features of the SystemC language,
e.g. to replace the custom fifo channel with a corresponding sc_fifo<char> channel from
the standard SystemC channel library

http://www.ece.utexas.edu/%7Egerstl/ee382v_f10/docs/SystemC_setup.pdf

EE382V: Embedded Sys Dsgn and Modeling, Homework #3 3

For this problem, we will take the TLM of the SpecC parity generator/encoder example
developed in Homework 2, Problem 2.6 and model it in SystemC. As a reference, you can start
from the SpecC code posted as part of the solutions to Homework 2 on Blackboard. Following
the ideas outlined in reference [25] on the class webpage, we convert the SpecC TLM into an
equivalent SystemC one:

(a) Assume again a partitioning where the Even process is mapped to PE1, the Ones process
is mapped to PE2, and a Bus1 is connecting PE1 (master) and PE2 (slave) using a
modified double-handshake protocol. Translate the SpecC TLM of the parity checker
design from Problem 2.6(b) into a corresponding SystemC TLM where a top-level
Design module reflects this partitioning. Matching what we did conceptually in SpecC,
follow a loosely timed coding style with blocking transports, active slaves and no
temporal decoupling. A SystemC implementation of the DblHndShk bus TLM channel is
provided for you under:
/home/projects/courses/fall_10/ee382v-16985/DblHndShkBus{.h/.cpp}

In a straightforward manner, the SpecC behavior hierarchy is converted into a matching
hierarchy of SystemC modules where each SpecC behavior becomes a SystemC module
with exactly one main process. Create layers of modules representing the two PEs and
group the processes under these PE1 and PE2 modules according to their mapping. Insert
a single instance of the Bus1 DblHndShk protocol channel and realize all inter-PE
communication to go over this bus instance.

Finally, enclose this Design into a typical testbench setup. Implement the top level of
the example (Top behavior) to describe a proper structure consisting of IO and Design
modules. To make things easier, you are free to convert all communication between IO
and Design into SystemC sc_fifo<T> channels of appropriate template type T:

IO

Top

main

Design

PE1 PE2

Bus1

m
as

te
r

s
la

v
e

Even

main

Ones

main

Simulate the model to validate its correctness. Turn in the source files and all input and
output test files.

Extra credit: convert the model into one that follows the SystemC TLM2.0 standard, i.e.
convert the interface between the PEs and the TLM bus channel into TLM2.0 sockets (for
simplicity you can use the simple sockets that are part of the tlm_utils package). The
SystemC TLM library is installed under:
/usr/local/packages/systemc-tlm-2.0.1

(b) Report on your experiences with SpecC and SystemC modeling. Compare and contrast
the languages in terms of ease of use, feature richness, modeling expressiveness, etc. Do
the languages meet the goals and requirements for SLDLs outlined early in class? How
could the languages be improved?

	Problem 3.1: Bus Taxonomy
	Problem 3.2: Communication Primitives
	Problem 3.3: Communication Refinement
	Problem 3.4: SystemC Modeling

