
Embedded System Design and Modeling
EE382V, Fall 2010

Lab #1
Specification

Due: October 3, 2010 (11:59pm)

Instructions:
 Please submit your solutions via Blackboard. Submissions should include a lab report

(single PDF) and a single Zip or Tar archive with the source and supplementary files
(code should include a README and has to be compilable and simulatable by running
'make' and ‘make test’).

 You are allowed to work in teams of up to three people and you are free to switch
partners between labs and the project. Please submit one solution per team.

Digital Camera Specification Model

The purpose of this lab is to convert the JPEG Encoder reference code into a clean SpecC
specification model of the digital camera design that conforms to the structure, rules and
specification modeling guidelines discussed in class. A C reference implementation of the core
JPEG encoder, which we will use as a starting point for our design, is available at
/home/projects/courses/fall_10/ee382v-16985/jpegencoder.tar.gz

Install the JPEG encoder example as follows:
mkdir lab1
cd lab
gtar xvzf /home/projects/…/ee382v-16985/jpegencoder.tar.gz
cd jpegencoder

Now you can compile and run the example using the provided Makefile:
make
make test

The latter command runs the example on a “ccd.bmp” sample input and validates the generated
“test.jpg” file against an expected “golden.jpg” reference output.

You are free to perform the conversion process into a SpecC specification in one step. However,
good software engineering principles highly recommend breaking the process into as many small
steps as possible. That way the model can be compiled and simulated after each change, to
continuously validate that it is still syntactically and functionally correct:

(a) First, we need to become familiar with the reference code and prepare it for conversion:

1. Browse the source, analyze the source code structure and draw a high-level block
diagram of the function hierarchy and their communication dependencies (critical
variables). Submit the block diagram of the software architecture of the reference code as
part of your lab report.

2. Next, clean up the source code to make it static and synthesizable. Modify the sources for
a fixed input image sensor size of 116×96 pixels. Simplify the code as much as possible,
remove any unnecessary communication/dependencies, and convert all dynamic memory
allocation into appropriate static data structures (i.e. remove all malloc calls, which are
not implementable in hardware and not supported on many embedded processors and
operating systems). Report on the code changes that you performed.

EE382V: Embedded Sys Dsgn and Modeling, Lab #1 2

(b) Next, we transform the simplified, static code into an initial SpecC model with proper
behavioral and structural hierarchy. Gradually convert <name>.c/.h C files into
<name>.sc/.sir SpecC modules, where each module gets translated into one or more SpecC
behaviors, which can then be hierarchically imported and composed into an overall design:

1. Convert read.c, dct.c, quantize.c, zigzag.c and huffencode.c into corresponding .sc files.
Introduce a single behavior of appropriate name in each file. Let the behavior encapsulate
all local variables and functions (i.e. files must not have any variables or functions
outside of behaviors). Convert the externally accessible function listed in the .h file into
the behavior’s main method and replace parameters with equivalent behavior ports for
external communication. Ensure that behaviors are free of side effects, i.e. that they only
communicate with other behaviors through their ports and do not access any global
variables outside of their body.

2. Convert preshift, chendct and bound methods in dct.sc into separate behaviors and
transform the Dct behavior into a sequential composition of these subbehaviors. Connect
child behaviors to communicate through variables mapped onto their ports.

3. Introduce a new behavior and file huff.sc that implements the sequential composition of
(imported) Zigzag and Huffencode child behaviors. Connect behavior ports to appropriate
external ports or local variables throughout the hierarchy.

4. Convert ReadBmp_aux.c and file.c into Stimulus and Monitor behaviors for the testbench,
respectively. The Stimulus behavior reads the input file into a shared ScanBuffer port
(ReadBmp) and then sends a start signal over a c_handshake channel. The Monitor reads
bytes from a c_queue interface and writes them into an output file (FileWrite)
continuously, one byte at a time until the end-of-file marker is reached.

5. Convert jpegencoder.c into a jpegencoder.sc file and behavior that first waits for a start
signal via a c_handshake interface and then executes ReadBlock, Dct, Quantize and Huff
child behaviors sequentially in a loop. Let child behaviors communicate through
variables mapped onto their ports and introduce external ports and mappings as necessary.

6. Introduce a top-level digicam.sc file that contains the Main behavior implementing a
typical testbench running concurrent Stimulus, JpegEncoder and Monitor subbehaviors:

JpegEncoder Monitor

FileWrite()

Stimulus

ReadBmp()

Main

Quant

Read

S
ca

nB
uf

fe
r

Dct

Huff

The Stimulus is connected to the JpegEncoder through a shared ScanBuffer variable
representing the CCD sensor array. In addition, a c_handshake channel represents the
signal that the camera shutter has been triggered and that encoding of the CCD sensor
picture should be started. At the other end, the Monitor receives a stream of encoded
bytes from the Huffman encoder (Huffencode) through a c_queue representing the file
I/O interface.

EE382V: Embedded Sys Dsgn and Modeling, Lab #1 3

7. Remove the .h files and compile all .sc sources into .sir files and check for compile errors.
Finally, compile the top-level digicam.sc source into an executable and simulate the
design. Validate the generated output against the known good data to ensure the design is
working correctly. Note: it is highly recommended to update the Makefile in order to
automate the compilation process using the make utility.

(c) Lastly, we finalize the SpecC specification model to obtain a clean and parallel/pipelined
specification that can be use for design space exploration and MPSoC synthesis:

1. First, we want to extend our digital camera to take more than just one picture. We model
this by repeating the encoding process of the same picture a number of times (make the
number configurable at compile time and let it default to 3). Insert a for-loop each into
the Stimulus and the Monitor to do so. It is ok to overwrite the same output file and to
only test the last compressed picture for correctness. Option for extra credit: you can
implement reading from multiple files (ccd_0.bmp, ccd_1.bmp, ccd_2.bmp, …) and
output to multiple files (test_0.jpg, test_1.jpg, …). In this case, make sure to update the
Makefile to check the correctness of all images.

2. During the exploration process we are interested in printing the simulated time it took for
encoding a single image. To achieve this, insert timing checks into the testbench. Update
the Stimulus behavior to wait for 1000 time units before sending the first start signal to
the encoder. Feel free to insert additional delays between start signals of consecutive
images to model timing of user start button presses. Make the start time of each image
available to the Monitor and print the total delay required for encoding of each single
picture (from sending the start signal to receiving the last byte of the image). Simulate the
model to check timing info is printed correctly (delays should be zero at this point).

3. For synthesis, we need to develop an accurate model of the actual I/O structure for the
digital camera. The testbench (Stimulus and Monitor) will not be synthesized (and hence
can contain non-synthesizable functionality – e.g. file accesses). As a result, we can also
not refine the communication to the testbench (that means regardless of the refinement
process, testbench communication will always use abstract communication channels or
variables but never any bus). To more accurately reflect the I/O structure of the real
system, we want to create another set of parallel behaviors representing I/O blocks that
will be synthesized into hardware I/O components (CCD Control and Flash Interface).
These I/O behaviors can then communicate with outside behaviors, i.e. the unrefined
testbench. During backend synthesis they will eventually be replaced with pre-designed
hardware blocks that implement the real I/O with the CCD sensor and the Flash memory.

Design Monitor

FileWrite()

Stimulus

ReadBmp()

Main

S
ca

nB
uf

fe
r

Jpeg WriteRead

Move the ReadBlock behavior outside of the JpegEncoder, move the waiting for the start
signal into ReadBlock and modify ReadBlock to independently loop over all 180 blocks

EE382V: Embedded Sys Dsgn and Modeling, Lab #1 4

in a picture and send them over its outgoing queue after the start signal has been received.
Introduce a WriteBlock behavior (write.sc) that continuously reads bytes from a queue
and forwards them into an outgoing double-handshake channel. Introduce an additional
level of hierarchy as a Design behavior (design.sc) that sits between Monitor and
Stimulus and is a parallel composition of ReadBlock, JpegEncoder and WriteBlock
instances communicating via c_queue channels, where the input queue should have space
for 1 block of data and the output queue should be 512 bytes in size.

4. Parallelize the JpegEncoder into a KPN model with continuously running parallel
processes. Remove the ReadBlock instance (as discussed above) and change the top-level
JpegEncoder execution into a single par statement in which the three remaining child
behaviors communicate via c_typed_queue channels of size 1 data blocks. An example
and tutorial for use of typed queues can be found at:

$SPECC/examples/sync/c_bit64_queue.sc
$SPECC/examples/sync/typed_queue.sc

Finally, modify Dct, Quantize and Huff to work on continuous streams of input and
output data over c_int64_queue channels. Change the sequential sub-composition inside
Dct and Huff behaviors into an fsm that runs child behaviors sequentially in an endless
loop. Introduce an additional level of hierarchy in quantize.sc as a behavior Quant that
runs Quantize in an endlessly looping fsm. Replace the top-level Quantize instance in
JpegEncoder with Quant.

Your final hierarchy should look like the following SIR tree and the graphical SpecC chart
shown in the appendix (generated with SCE, which we will start using in the next lab):

% sir_tree -blt digicam.sir
B i o behavior Main
B i c |------ Design design
B i c | |------ JpegEncoder jpeg
B i f | | |------ Dct dct
B i l | | | |------ Bound bound
B i l | | | |------ ChenDct chendct
B i l | | | \------ Preshift preshift
B i f | | |------ Huff huff
B i l | | | |------ Huffencode huffencode
B i l | | | \------ Zigzag zigzag
B i f | | |------ Quant quant
B i l | | | \------ Quantize quantize
C i l | | |------ c_int64_queue dctout
C i l | | \------ c_int64_queue quantizeout
B i l | |------ ReadBlock read
B i l | |------ WriteBlock write
C i l | |------ c_queue dataout
C i l | \------ c_int64_queue dctin
B i l |------ Monitor monitor
B i l |------ Stimulus stimulus
C i l |------ c_double_handshake data
C i l \------ c_handshake start

Congratulations on successful conversion! Make sure your final model compiles, simulates and
produces the golden reference output. Include a brief description of the status of your model in
the lab report. Also discuss if and how this model could be improved to better support
exploration and implementation. E.g. is there additional parallelism that could be exposed or
could the application be better modeled using a MoC other than a KPN?

Main

design

da
ta

st
ar
t

Sc
an
Bu
ffe
r

st
ar
t_
tim
e

monitor
start_time
data

stimulus
ScanBuffer
start
start_time

read

jpeg

write

ScanBuffer

start

data
dataout

dctin

dctin

data

huff

dct

quant

dctout

quantizeout

tm
p2
_b
lo
ck

zi
gz
ag
ou
t

preshift
in_data
out_block

in
_d
at
a

tm
p1
_b
lo
ck

quantize
in_data
out_data

ou
t_
da
ta

in
_d
at
a

ou
t_
da
ta

chendct
in_block
out_block

bound
in_block
out_data

zigzag
in_data
out_block

huffencode
in_block
data

in
_d
at
a

ou
t_
da
ta

	lab1.pdf
	Digital Camera Specification Model

	jpegencoder3.pdf

