
Embedded System Design and Modeling 
EE382V, Fall 2010 

Lab #1 
Specification 

Due: October 3, 2010 (11:59pm) 

Instructions: 
 Please submit your solutions via Blackboard. Submissions should include a lab report 

(single PDF) and a single Zip or Tar archive with the source and supplementary files 
(code should include a README and has to be compilable and simulatable by running 
'make' and ‘make test’). 

 You are allowed to work in teams of up to three people and you are free to switch 
partners between labs and the project. Please submit one solution per team. 

 

Digital Camera Specification Model 

The purpose of this lab is to convert the JPEG Encoder reference code into a clean SpecC 
specification model of the digital camera design that conforms to the structure, rules and 
specification modeling guidelines discussed in class. A C reference implementation of the core 
JPEG encoder, which we will use as a starting point for our design, is available at 
/home/projects/courses/fall_10/ee382v-16985/jpegencoder.tar.gz 

Install the JPEG encoder example as follows: 
mkdir lab1 
cd lab 
gtar xvzf /home/projects/…/ee382v-16985/jpegencoder.tar.gz 
cd jpegencoder 

Now you can compile and run the example using the provided Makefile: 
make 
make test 

The latter command runs the example on a “ccd.bmp” sample input and validates the generated 
“test.jpg” file against an expected “golden.jpg” reference output. 

You are free to perform the conversion process into a SpecC specification in one step. However, 
good software engineering principles highly recommend breaking the process into as many small 
steps as possible. That way the model can be compiled and simulated after each change, to 
continuously validate that it is still syntactically and functionally correct: 

(a) First, we need to become familiar with the reference code and prepare it for conversion:  

1. Browse the source, analyze the source code structure and draw a high-level block 
diagram of the function hierarchy and their communication dependencies (critical 
variables). Submit the block diagram of the software architecture of the reference code as 
part of your lab report.  

2. Next, clean up the source code to make it static and synthesizable. Modify the sources for 
a fixed input image sensor size of 116×96 pixels. Simplify the code as much as possible, 
remove any unnecessary communication/dependencies, and convert all dynamic memory 
allocation into appropriate static data structures (i.e. remove all malloc calls, which are 
not implementable in hardware and not supported on many embedded processors and 
operating systems). Report on the code changes that you performed. 
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(b) Next, we transform the simplified, static code into an initial SpecC model with proper 
behavioral and structural hierarchy. Gradually convert <name>.c/.h C files into 
<name>.sc/.sir SpecC modules, where each module gets translated into one or more SpecC 
behaviors, which can then be hierarchically imported and composed into an overall design: 

1. Convert read.c, dct.c, quantize.c, zigzag.c and huffencode.c into corresponding .sc files. 
Introduce a single behavior of appropriate name in each file. Let the behavior encapsulate 
all local variables and functions (i.e. files must not have any variables or functions 
outside of behaviors). Convert the externally accessible function listed in the .h file into 
the behavior’s main method and replace parameters with equivalent behavior ports for 
external communication. Ensure that behaviors are free of side effects, i.e. that they only 
communicate with other behaviors through their ports and do not access any global 
variables outside of their body.  

2. Convert preshift, chendct and bound methods in dct.sc into separate behaviors and 
transform the Dct behavior into a sequential composition of these subbehaviors. Connect 
child behaviors to communicate through variables mapped onto their ports. 

3. Introduce a new behavior and file huff.sc that implements the sequential composition of 
(imported) Zigzag and Huffencode child behaviors. Connect behavior ports to appropriate 
external ports or local variables throughout the hierarchy. 

4. Convert ReadBmp_aux.c and file.c into Stimulus and Monitor behaviors for the testbench, 
respectively. The Stimulus behavior reads the input file into a shared ScanBuffer port 
(ReadBmp) and then sends a start signal over a c_handshake channel. The Monitor reads 
bytes from a c_queue interface and writes them into an output file (FileWrite) 
continuously, one byte at a time until the end-of-file marker is reached. 

5. Convert jpegencoder.c into a jpegencoder.sc file and behavior that first waits for a start 
signal via a c_handshake interface and then executes ReadBlock, Dct, Quantize and Huff 
child behaviors sequentially in a loop. Let child behaviors communicate through 
variables mapped onto their ports and introduce external ports and mappings as necessary. 

6. Introduce a top-level digicam.sc file that contains the Main behavior implementing a 
typical testbench running concurrent Stimulus, JpegEncoder and Monitor subbehaviors: 

JpegEncoder Monitor

FileWrite()

Stimulus

ReadBmp()

Main

Quant

Read

S
ca

nB
uf

fe
r

Dct

Huff

 

The Stimulus is connected to the JpegEncoder through a shared ScanBuffer variable 
representing the CCD sensor array. In addition, a c_handshake channel represents the 
signal that the camera shutter has been triggered and that encoding of the CCD sensor 
picture should be started. At the other end, the Monitor receives a stream of encoded 
bytes from the Huffman encoder (Huffencode) through a c_queue representing the file 
I/O interface. 
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7. Remove the .h files and compile all .sc sources into .sir files and check for compile errors. 
Finally, compile the top-level digicam.sc source into an executable and simulate the 
design. Validate the generated output against the known good data to ensure the design is 
working correctly. Note: it is highly recommended to update the Makefile in order to 
automate the compilation process using the make utility. 

(c) Lastly, we finalize the SpecC specification model to obtain a clean and parallel/pipelined 
specification that can be use for design space exploration and MPSoC synthesis: 

1. First, we want to extend our digital camera to take more than just one picture. We model 
this by repeating the encoding process of the same picture a number of times (make the 
number configurable at compile time and let it default to 3). Insert a for-loop each into 
the Stimulus and the Monitor to do so. It is ok to overwrite the same output file and to 
only test the last compressed picture for correctness. Option for extra credit: you can 
implement reading from multiple files (ccd_0.bmp, ccd_1.bmp, ccd_2.bmp, …) and 
output to multiple files (test_0.jpg, test_1.jpg, …). In this case, make sure to update the 
Makefile to check the correctness of all images. 

2. During the exploration process we are interested in printing the simulated time it took for 
encoding a single image. To achieve this, insert timing checks into the testbench. Update 
the Stimulus behavior to wait for 1000 time units before sending the first start signal to 
the encoder. Feel free to insert additional delays between start signals of consecutive 
images to model timing of user start button presses. Make the start time of each image 
available to the Monitor and print the total delay required for encoding of each single 
picture (from sending the start signal to receiving the last byte of the image). Simulate the 
model to check timing info is printed correctly (delays should be zero at this point). 

3. For synthesis, we need to develop an accurate model of the actual I/O structure for the 
digital camera. The testbench (Stimulus and Monitor) will not be synthesized (and hence 
can contain non-synthesizable functionality – e.g. file accesses). As a result, we can also 
not refine the communication to the testbench (that means regardless of the refinement 
process, testbench communication will always use abstract communication channels or 
variables but never any bus). To more accurately reflect the I/O structure of the real 
system, we want to create another set of parallel behaviors representing I/O blocks that 
will be synthesized into hardware I/O components (CCD Control and Flash Interface). 
These I/O behaviors can then communicate with outside behaviors, i.e. the unrefined 
testbench. During backend synthesis they will eventually be replaced with pre-designed 
hardware blocks that implement the real I/O with the CCD sensor and the Flash memory. 

Design Monitor

FileWrite()

Stimulus

ReadBmp()

Main
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uf
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Jpeg WriteRead

 

Move the ReadBlock behavior outside of the JpegEncoder, move the waiting for the start 
signal into ReadBlock and modify ReadBlock to independently loop over all 180 blocks 
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in a picture and send them over its outgoing queue after the start signal has been received. 
Introduce a WriteBlock behavior (write.sc) that continuously reads bytes from a queue 
and forwards them into an outgoing double-handshake channel. Introduce an additional 
level of hierarchy as a Design behavior (design.sc) that sits between Monitor and 
Stimulus and is a parallel composition of ReadBlock, JpegEncoder and WriteBlock 
instances communicating via c_queue channels, where the input queue should have space 
for 1 block of data and the output queue should be 512 bytes in size. 

4. Parallelize the JpegEncoder into a KPN model with continuously running parallel 
processes. Remove the ReadBlock instance (as discussed above) and change the top-level 
JpegEncoder execution into a single par statement in which the three remaining child 
behaviors communicate via c_typed_queue channels of size 1 data blocks. An example 
and tutorial for use of typed queues can be found at: 

$SPECC/examples/sync/c_bit64_queue.sc 
$SPECC/examples/sync/typed_queue.sc 

Finally, modify Dct, Quantize and Huff to work on continuous streams of input and 
output data over c_int64_queue channels. Change the sequential sub-composition inside 
Dct and Huff behaviors into an fsm that runs child behaviors sequentially in an endless 
loop. Introduce an additional level of hierarchy in quantize.sc as a behavior Quant that 
runs Quantize in an endlessly looping fsm. Replace the top-level Quantize instance in 
JpegEncoder with Quant. 

Your final hierarchy should look like the following SIR tree and the graphical SpecC chart 
shown in the appendix (generated with SCE, which we will start using in the next lab): 

% sir_tree -blt digicam.sir 
B i o   behavior Main 
B i c   |------ Design design 
B i c   |       |------ JpegEncoder jpeg 
B i f   |       |       |------ Dct dct 
B i l   |       |       |       |------ Bound bound 
B i l   |       |       |       |------ ChenDct chendct 
B i l   |       |       |       \------ Preshift preshift 
B i f   |       |       |------ Huff huff 
B i l   |       |       |       |------ Huffencode huffencode 
B i l   |       |       |       \------ Zigzag zigzag 
B i f   |       |       |------ Quant quant 
B i l   |       |       |       \------ Quantize quantize 
C i l   |       |       |------ c_int64_queue dctout 
C i l   |       |       \------ c_int64_queue quantizeout 
B i l   |       |------ ReadBlock read 
B i l   |       |------ WriteBlock write 
C i l   |       |------ c_queue dataout 
C i l   |       \------ c_int64_queue dctin 
B i l   |------ Monitor monitor 
B i l   |------ Stimulus stimulus 
C i l   |------ c_double_handshake data 
C i l   \------ c_handshake start 

Congratulations on successful conversion! Make sure your final model compiles, simulates and 
produces the golden reference output. Include a brief description of the status of your model in 
the lab report. Also discuss if and how this model could be improved to better support 
exploration and implementation. E.g. is there additional parallelism that could be exposed or 
could the application be better modeled using a MoC other than a KPN? 
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