
Center for Embedded Computer Systems
University of California, Irvine

SCE Specification Model Reference Manual

Andreas Gerstlauer
Rainer Dömer

System-On-Chip Environment (SCE)
Version 2.2.1
June 18, 2008

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-2620, USA

(949) 824-8919

http://www.cecs.uci.edu

SCE Specification Model Reference Manual

Andreas Gerstlauer
Rainer Dömer

System-On-Chip Environment (SCE)
Version 2.2.1
June 18, 2008

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-2620, USA

(949) 824-8919

gerstl@cecs.uci.edu
doemer@cecs.uci.edu

http://www.cecs.uci.edu

Contents

1 Introduction 1
1.1 SCE Methodology . 1
1.2 SpecC Language . 3
1.3 Specification Model . 3

2 Modeling Guidelines 5
2.1 Computation . 5

2.1.1 Granularity . 5
2.1.2 Hierarchy . 6
2.1.3 Encapsulation . 6
2.1.4 Concurrency . 7
2.1.5 Time . 7

2.2 Communication . 8
2.2.1 Semantics . 8
2.2.2 Dependencies . 8

3 Modeling Style 9
3.1 Computation . 11

3.1.1 Leaf Behaviors . 11
3.1.2 Hierarchical Behaviors . 12

3.2 Communication . 12
3.2.1 Behavior Interfaces (Ports) . 13
3.2.2 Connectivity (Variables and Channels) 13

4 C Code Conversion 15
4.1 Code Refinement . 15

4.1.1 Syntactic Refinement . 15
4.1.2 Semantic Refinement . 16

4.2 Basic Constructs . 16

i

CONTENTS ii

4.2.1 If (no else) Statement . 16
4.2.2 If Else Statement . 17
4.2.3 While Statement . 18
4.2.4 Do While Statement . 18
4.2.5 For Statement . 19

4.3 Composite Constructs . 21
4.3.1 Clean While and If Statements . 21
4.3.2 Unclean While and If Else Statements 22

4.4 Example . 22
4.4.1 Translation: Step 1 . 25
4.4.2 Translation: Step 2 . 26
4.4.3 Translation: Step 3 . 26
4.4.4 Translation: Step 4 . 26
4.4.5 Translation: Step 5 . 26

Acknowledgments 30

References 31

List of Figures

1.1 SCE design flow. 2

3.1 Specification model top-level structure. 9
3.2 Specification model top-level code. 10

4.1 If statement. 17
4.2 If Else statement. 18
4.3 While statement. 19
4.4 Do While statement. 20
4.5 For statement. 20
4.6 Combination of clean While and If statements. 21
4.7 Combination of unclean While and If Else statements. 22
4.8 FSM for combination of unclean While and If Else statements. 23
4.9 Second combination of unclean While and If Else statements. 23
4.10 FSM for second combination of unclean While and If Else statements. . . . 24
4.11 Complex example of nesting. 25
4.12 Step 1 - For Block. 26
4.13 Step 2 - Do While Block 1. 27
4.14 Step 3 - Do While Block 2. 27
4.15 Step 4 - If Else Block. 28
4.16 While Block. 28

iii

Chapter 1

Introduction

The System-On-Chip design environment (SCE) is an example of an implementation of a
state-of-the-art system-level design methodology [1]. SCE is a framework that combines a
set of tools under a common graphical user interface (GUI). Using this framework, the de-
signer can take an initial specification down to an actual implementation through a series of
interactive and automated steps. Starting from a purely functional description of the desired
system behavior, an implementation of the design on a heterogoeneous system architecture
with multiple processing elements (PEs) connected through system busses is produced at
the end of the design flow.

1.1 SCE Methodology

The SCE system-level design methodology is shown in Figure 1.1. The SCE methodology
is a set of four models and three transformation steps that take a system specification down
to an RTL implementation [1].

The system design flow consists of two main parts: (a) system synthesis, and (b) a
backend for hardware and software synthesis. In the SCE methodology, system synthesis is
further subdivided into two orthogonal tasks, architecture exploration and communication
synthesis. Architecture exploration implements the computation behavior of the specifi-
cation on a set of processing elements that form the system architecture. Communication
synthesis, on the other hand, implements the communication functionality of the specifica-
tion over the system busses.

Each system synthesis and backend task refines the model of the design at the current
stage of the design process into a new model representing the details of the implementation
added during the synthesis step. At the output of each task, the model of the design reflects
the implementation decisions made in the previous step. At the same time, each model
forms the input to the next task.

1

CHAPTER 1. INTRODUCTION 2

System design Validation flow

Specification model

Algor.
IP

Proto.
IP

Architecture model

Communication synthesis

Communication model

Comp.
IP

Estimation

Validation
Analysis

Compilation Simulation model

Estimation

Validation
Analysis

Compilation Simulation model

Estimation

Validation
Analysis

Compilation Simulation model

Implementation model

Software
compilation

Interface
synthesis

Hardware
synthesis

Backend Estimation

Validation
Analysis

Compilation Simulation model

RTOS
IP

RTL
IP

Architecture exploration

Capture

Figure 1.1: SCE design flow.

The system-level design process starts off with a specification of the desired system
behavior. This specification model is written by the user and forms the input to the design
process.

In the SCE methodology, the first task of system synthesis is architecture exploration.
Architecture exploration selects a set of processing elements and maps the computation
behavior of the specification onto the PEs. Architecture exploration refines the specification
model into the intermediate architecture model. The architecture model describes the PE
structure of the system architecture and the mapping of computation behaviors onto the
PEs, including estimated execution times for the behavior of each PE.

Architecture exploration is followed by communication synthesis to complete the sys-
tem synthesis process. Communication synthesis selects a set of system busses and proto-
cols, and maps the communication functionality of the specification onto the system busses.
Communication synthesis creates the communication model which reflects the bus archi-
tecture of the system and the mapping of communication onto the busses.

The communication model is the result of the system synthesis process. It describes

CHAPTER 1. INTRODUCTION 3

the structure of the system architecture consisting of PEs and busses, and the implemen-
tation of the system functionality on this architecture. It is timed in both computation and
communication, i.e. simulation detail is increased by events for estimated execution and
communication delays.

The communication model is a structural view at the system level. At the same time, the
specification of the functionality of each PE of the system in the form of a behavioral view
at the register-transfer level forms the input to the RTL synthesis of those components in
the backend. In a hierarchical fashion, each PE is synthesized separately in the backend and
the behavioral view of the PE is replaced with a structural view of its RTL or instruction-set
(IS) microarchitecture. The result of this backend process is the implementation model.

The implementation model is a cycle-accurate, structural description of the RTL/IS
architecture of the whole system. In a hierarchical fashion, the implementation model de-
scribes the system structure and the RTL structure of each PE in the system. Simulation
detail is increased down to the clock level, i.e. the timing resolution is in terms of clock
events for each local PE clock.

1.2 SpecC Language

The SCE methodology is supported by the SpecC system-level design language [2]. The
SpecC language as an example of a modern system-level design language (SLDL) was
developed under support and control of the SpecC Technology Open Consortium (STOC)
[3] to satisfy all the requirements for an efficient formal description of the models in the
SCE methodology.

In the SpecC methodology, all four models of the design process starting with the speci-
fication model and down to the implementation model are described in the SpecC language.
One common language removes the need for tedious translation. Furthermore, all the mod-
els in SpecC are executable which allows for validation through simulation, reusing one
single testbench throughout the whole design flow. In addition, the formal nature of the
models enables application of formal methods, e.g. for verification or equivalence check-
ing.

1.3 Specification Model

As outlined previosuly, the specification model is the input to the SCE design flow. It
is captured graphically or textually by the designer in the form of SpecC code to specify
the system functionality to implement. All other models of the SCE design flow will be
generated automatically from the specification model through a sequence of interactive,
GUI-assisted refinement steps. As such, the specification model needs to precisely and
unambiously describe the desired system behavior on top of the SpecC language semantics.

CHAPTER 1. INTRODUCTION 4

Furthermore, the specification model defines the possible design space for exploration and
quality of implementation results therefore depends to a large extent on the characteristics
of the specification model. For example, any premature references to implementation detail
will prevent exploration of solutions outside of the scope imposed by such restrictions.

In this manual, we define how to describe a proper specification model in SpecC.
First, a set of general guidelines for writing good specification models will be given in
Chapter 2. Then, in Chapter 3, specific and detailed rules and restrictions imposed on the
specification model style are defined. Finally, Chapter 4 describes how straight-line C code
can be efficiently converted into a SpecC specification model.

Chapter 2

Modeling Guidelines

The specification model is the input of the design flow. It is captured by the user to specify
the desired system functionality. The specification is a behavioral view of the system, i.e.
it describes the desired functionality in an abstract manner. The specification model is
a purely functional model, free of any implementation details. Therefore, objects at the
specification level are abstract entities that do not correspond to real physical components.

A key aspect of the specification model is to separate computation from communication.
On the one hand, this is a requirement for composability of a system out of components
including the reuse of pre-existing IP components. On the other hand, this separation of
concerns allows to implement computation and communication in two separate steps of the
design flow.

2.1 Computation

In terms of computation, the specification is hierarchically composed of SpecC behaviors.
Behaviors are arranged sequentially, concurrently, or in a mix of both, i.e. in a pipelined
fashion. Behaviors at the leaves of the hierarchy contain basic algorithms in the form of
straight-line C code that perform arithmetic and logical operations on data. In addition
to temporary data, leaf behaviors will encapsulate any permanent storage required by the
algorithm.

2.1.1 Granularity

The basic, indivisible units of granularity for design space exploration are SpecC behav-
iors. That is, during the design process the specification will be partitioned along behavior
boundaries but behaviors at the leaves of the hierarchy form the smallest, indivisible units

5

CHAPTER 2. MODELING GUIDELINES 6

for exploration. Therefore, leaf behaviors contain basic algorithms in the form of C code,
reading from their inputs, processing a data set, and producing outputs.

Algorithms of the specification model are split into leaf behaviors along the boundaries
defined between reading and writing of data structures. On the other hand, all the code
needed to process a complete, consistent data set is kept together in one leaf behavior.

Also, the ratio of communication to computation should be minimized yet the size of
the leaf behaviors be kept small and manageable with well-defined, sensible interfaces and
possible reuse in mind. As a rule of thumb, what would be a traditional C function will
become a leaf behavior with typically half a page to maximally two pages of code.

2.1.2 Hierarchy

At each level of hierarchy, the system is composed of self-contained blocks with well-
defined interfaces enabling easy composition, rearrangement, and reuse. Closely related
functionality is grouped through hierarchy. Higher-level behaviors encapsulate tightly cou-
pled groups of subbehaviors such that the ratio of external to internal communication is
minimized. On the other hand, the number of subbehaviors per parent should be kept small
and manageable. As a guideline, behaviors typically have 2-5 children on average.

At each level, the behavior hierarchy has to be clean. Different behavioral concepts
must not be mixed in the same level. A behavior is either a hierarchical composition of
subbehaviors or a leaf behavior with sequential code. Similarly, a hierarchical behavior is
either a sequential, parallel, pipelined or FSM composition of subbehaviors but does not
contain arbitrary C code.

2.1.3 Encapsulation

Information in the specification model has to be localized as much as possible. This in-
cludes code (functions, methods), storage (variables), and communication (port variables,
channels). Each hierarchical unit (behavior) encapsulates and abstracts as many local de-
tails as possible, hiding them from the higher levels. Hierarchical behaviors encapsulate
dependencies and communication of a group of subbehaviors, providing only an interface
to their combined functionality.

At the leaves, behaviors encapsulates all the code and storage needed by the algorithm.
As mentioned above, global, static variables become member variables of the leaf behavior.
Furthermore, global functions that are called out of leaf behaviors have to be avoided
unless they represent basic operations equivalent to built-in operators. Instead, depending
on size and number of callers, functions are converted into separate leaf behaviors that get
instantiated as subbehaviors of the caller, or global functions are moved into the calling
behavior where they become local methods. As mentioned above, an exception are small

CHAPTER 2. MODELING GUIDELINES 7

helper functions with a few lines of code that are used ubiquitously and can be considered
basic operations (on the same level as additions or multiplications).

2.1.4 Concurrency

Any concurrency available between independent behaviors in the specification has to be ex-
posed through their parallel or pipelined composition. That is, all behaviors that do not have
any control or data dependencies (or data dependencies only across iterations) are arranged
to execute in a concurrent fashion. Furthermore, the behavior hierarchy is constructed in
such a way as to maximize the number of independent behaviors and hence the available
parallelism.

Dependent behaviors, on the other hand, are not arranged in a concurrent fashion. In-
stead, their dependencies are captured explicitly through transitions. An exception are rare
(control) dependencies between otherwise highly independent top-level tasks, for example.
In those cases, communication and synchronization are modeled using channels between
the tasks.

Concurrent behaviors in the specification model reflect the available parallelism in
the specification. Therefore, they should be as independent as possible. Data or control
dependencies between behaviors at the specification level are explicitly captured through
the behavior hierarchy. Instead of concurrent behaviors that communicate or synchronize
through variables or events, the behaviors are split into independent parts that can run in
parallel and dependent parts that have to be executed sequentially.

2.1.5 Time

The specification model is untimed and all behaviors execute in zero logical time. There-
fore, the only events in the system are events for synchronization in order to specify causal-
ity. The ordering of events in the system is based on causal relationships only and there is
no notion of time. The system is partially ordered based on causality as determined by the
explicit or implicit dependencies between behaviors. As the design flow progresses, timing
information that will be added to the system will successively introduce additional order
based on delays.

Apart from the untimed behavior, however, the specification model can contain con-
straints for execution times of parts of the specification. During the design process, it then
has to be assured that any time introduced into the model does not violate any of the con-
straints.

CHAPTER 2. MODELING GUIDELINES 8

2.2 Communication

In terms of communication, exchange of data between behaviors in the specification model
is encapusulated into SpecC channels that connect behaviors through ports. Channels de-
scribe how data and synchronization messages are transfered between two communication
partners in an abstract way.

2.2.1 Semantics

Behaviors at the specification level communicate via message-passing channels. Behaviors
exchange data by sending and receiving messages over communication channels with ap-
propriate semantics. In the case of a sequential composition, message-passing degenerates
to simple variables. Data is exchanged by reading and writing from/to the variable. In the
general case of data communication between concurrent behaviors, however, a message-
passing channel is instantiated.

The specification model instantiates channels out of a SpecC channel library with pre-
defined, known semantics. By using the predefined channels out of the library, com-
monly needed communication functionality is available for integration into the specification
model.

Note that the specification models of channels do not imply any specific implementation
of their abstract semantics. The code inside the channel is for simulation of the correct
semantics during execution only. It is the task of communication synthesis to refine those
abstract channels into an actual implementation of the desired semantics using the available
system bus protocols and PE interfaces.

2.2.2 Dependencies

Data dependencies in the specification are reflected explicitly in the behavioral hierarchy
as transitions between behaviors, either through a sequential composition or conditionally
using the fsm statement. In this case, channels degenerate to simple variables connecting
behaviors, and the need for implicit synchronization through message-passing is eliminated.

All dependencies are explicitly captured through the connectivity between behaviors
and no hidden side effects exist. Global variables have to be avoided completely. Static
variables accessed from a single leaf behavior become member variables of that behavior.
Global variables used for communication have to be turned into explicit dependencies in
the form of connectivity as behaviors are only allowed to exchange data through their ports.

Chapter 3

Modeling Style

In general, the specification input model is written in SpecC and as such has to adhere to
the syntax and semantics of the SpecC language [2]. However, to form a valid specification
model that can be input into the SpecC design flow, additional rules and restrictions on top
of the SpecC base have to be adhered to as defined in this section. Note that, apart from that,
unless otherwise noted here, any valid SpecC code is an acceptable specification model.

Design MonitorStimulus

Main

Figure 3.1: Specification model top-level structure.

Figure 3.1 and Figure 3.2 show an example template for a valid specification model. A
specification model has to be an executable SpecC model, i.e. it has to define a Main behav-
ior. A specification model consists of a testbench that surrounds the actual design to be im-
plemented. A testbench consists of stimulating (Stimulus) and monitoring (Monitor)
behaviors that are executing concurrently to the actual design (Design) in the top-most
Main behavior, and that drive the design under test and check the generated output against
known good values.

The design to be implemented is defined by a single SpecC behavior (Design) which
in turn can be hierarchically composed out of a tree of subbehaviors. For a valid spec-

9

CHAPTER 3. MODELING STYLE 10

import ” c d o u b l e h a n d s h a k e ” ;

behavior S t i m u l u s (i s e n d e r i n p u t) { / / S t i m u l i c r e a t o r
void main (void) {

5 / / w h i l e (. . .) { . . . ; i n p u t . send (. . .) ; . . . }
}

} ;

behavior Moni to r (i r e c e i v e r o u t p u t) { / / Ou tpu t m o n i t o r
10 void main (void) {

/ / w h i l e (. . .) { . . . ; o u t p u t . r e c e i v e (. . .) ; . . . }
}

} ;

15 behavior Design (i r e c e i v e r i n p u t , i s e n d e r o u t p u t) { / / Sys tem d e s i g n
/ / . . .

void main (void) {
/ / f sm { . . . }

20 }
} ;

behavior Main () { / / Top l e v e l
c d o u b l e h a n d s h a k e i n p u t , o u t p u t ;

25

S t i m u l u s s t i m u l u s (i n p u t) ;
Des ign d e s i g n (i n p u t , o u t p u t) ;
Moni to r m o n i t o r (o u t p u t) ;

30 i n t main (void) {
par {

s t i m u l u s . main () ;
d e s i g n . main () ;
m o n i t o r . main () ;

35 }
}

} ;

Figure 3.2: Specification model top-level code.

CHAPTER 3. MODELING STYLE 11

ification model, all the behaviors that are part of this tree have to comply with the rules
and restrictions for describing computation and communication that will be defined in the
following sections. Note, however, that these restrictions do not apply to the testbench
part. Therefore, the testbench can be freely described using any valid SpecC code. For
example, while the code of the design to be implemented has to be available completely in
SpecC source form, the testbench can link against external translation units (libraries) for
additional functionality.

3.1 Computation

The computational part of the specification is described through the execution semantics
of the hierarchy of SpecC behaviors that form the design to be implemented. For a valid
specification model, this behavior hierarchy has to be clean. A clean hierarchy is defined
as a tree of behaviors in which every behavior is either a leaf behavior or a hierarchical
composition of subbehaviors as defined in the following sections.

3.1.1 Leaf Behaviors

In each leaf behavior, the behavior main() method contains a piece of straight-line, plain
ANSI-C code. Specifically, the following rules define the restrictions that apply to leaf
behaviors.

Rule 3.1 A leaf behavior must not contain any channel or behavior instances. It can,
however, contain instances of variables.

Rule 3.2 Inside a leaf behavior, address of operation (&) is not allowed on the port
variables.

Rule 3.3 Inside the behavior methods, static variables can not be used.

Rule 3.4 Leaf behavior methods can contain valid ANSI-C statements only. Specifically,
the following restrictions apply:

(a) no SpecC-specific statements (like par),

(b) no piped variables, and

(c) only valid ANSI-C data types are allowed inside expressions and for all variable defi-
nitions.

Rule 3.5 For leaf behaviors that should be implementable in hardware, the following ad-
ditional restrictions apply:

CHAPTER 3. MODELING STYLE 12

(a) no pointers (no variables or expressions of pointer type),

(b) no multi-dimensional arrays, and

(c) no composite variables of struct, union, or enum type.

If any of these restrictions are violated, the corresponding leaf behavior will be limited to a
software implementation. In order to allow the greatest possible flexibility for exploration,
these restrictions have to be followed as much as possible for all leaf behaviors.

Rule 3.6 Leaf behaviors can only make calls to ubiquitous global functions that have no
side effects affecting other behaviors and that have a native implementation on all PEs in
the processor library.

3.1.2 Hierarchical Behaviors

A hierarchical behavior is a composition of several subbehavior instances in a sequential,
parallel, pipelined or FSM fashion. More specifically, the following rules must be followed
when composing hierarchical behaviors.

Rule 3.7 A hierarchical behavior has exactly one method, the main() method, and the
main() method contains exactly one statement that is either

• a seq,

• a par,

• a pipe, or

• a fsm statement.

Rule 3.8 Each subbehavior instance can be called at most once inside the composition.

Rule 3.9 For the expressions in the arguments of a pipe() statement and in the if()
statements of fsm transitions the same rules and restrictions as for the C code in leaf
behaviors (Section 3.1.1) apply.

3.2 Communication

All communication in the specification model, both inside the design to be implemented and
between the testbench and the actual design, is described through variables and channels
that connect ports of behaviors.

CHAPTER 3. MODELING STYLE 13

3.2.1 Behavior Interfaces (Ports)

The list of ports of a behavior defines the interface between the behavior and its environ-
ment. Behaviors are only allowed to communicate with other behaviors through their ports.

Rule 3.10 Behaviors can have ports of standard (variable with direction) type or of inter-
face type.

For standard ports, the following restrictions apply:

(a) only valid ANSI-C data types, and

(b) no ports of pointer type are allowed.

For ports of interface type, only interfaces that are part of the standard SpecC channel
library are allowed.

Rule 3.11 Behaviors are not allowed to export any methods, i.e. they cannot implement any
interfaces.

Rule 3.12 Behaviors are not allowed to (directly or indirectly, e.g. through a call to a
global function) access variables and channels that are outside of their local scope. Code
inside behaviors can only reference variables or call methods of interfaces that are defined
inside the behavior as ports or local instances. Accesses of global variables or channels
are forbidden.

3.2.2 Connectivity (Variables and Channels)

Inside hierarchical behaviors, the connectivity of subbehaviors instances is defined by map-
ping ports of the hierarchical behavior or instances of variables and channels onto the ports
of the subbehaviors.

Rule 3.13 Ports of subbehavior instances inside a behavior can only be connected to the
ports of the parent behavior or to variables or channels instantiated inside the parent. It is
not allowed to map other subbehavior instances onto a subbehavior port.

Rule 3.14 Given the restrictions on standard port types (see Section 3.2.1), variables used
for connections (i.e. mapped to ports) can only be of the following data types:

(a) valid ANSI-C data types, but

(b) no variables of pointer type.

CHAPTER 3. MODELING STYLE 14

Rule 3.15 Variables with storage class piped are only allowed inside hierarchical be-
haviors with a pipe composition (see Section 3.1.2) to connect subbehaviors that act as
pipeline stages.

Rule 3.16 Inside a hierarchical behavior, only following channel types can be instantiated
and mapped to sub-behavior ports:

(a) c double handshake, typed or un-typed

(b) c queue, typed or un-typed

(c) c semaphore

(d) c handshake

(e) hierarchical channel that is a combination of above four types

Rule 3.17 A c semaphore channel instance can be used by more than two behav-
iors. A c handshake channel instance must be used between only two behaviors. A
c double handshake or c queue channel instance can only be used at any given
time between one sender behavior and one receiver behavior. However, such channel in-
stances can be shared by multiple pairs of senders and receivers (including a mix of multiple
send/receive calls in the same behavior) if all of the following conditions are satisfied:

(a) all sender behaviors execute sequentially,

(b) all receiver behaviors execute sequentially,

(c) all sender behaviors will be mapped to the same PE during partitioning, and

(d) all receiver behaviors will be mapped to the same PE during partitioning.

Chapter 4

C Code Conversion

In many cases, system design projects can leverage existing C code that describes all or part
of the desired system functionality. In order to feed into the SCE design flow, such C models
need to be converted into corresponding SpecC system models following the guidelines and
rules described in Chapter 2 and Chapter 3, respectively.

The rest of this chapter will outline this process by showing how a straight-line C model
can be converted into a valid SpecC specification model. For more information and details,
please refer to [6].

4.1 Code Refinement

The code refinement process can be divided into two steps, namely, syntactic refinement
and semantic refinement.

4.1.1 Syntactic Refinement

As a first step of C code conversion, syntactic refinement converts a C program into a
semantically equivalent SpecC program through purely syntactical conversions.

Basically, syntactic refinement converts the C functional call hierarchy into an equiv-
alent SpecC behavioral hierarchy. In general, each C function is converted into a SpecC
behavior and behaviors are composed hierarchically according to the hierarchy of function
calls in the C program. If necessary, adjustments to the behavior granularity can be made
during this step.

An important aspect of this refinement process is to make data dependencies in the C
code explicit by exposing and converting them into corresponding behavior dependencies
through ports and connections. On the one hand, function parameters and arguments can be
directly converted into behavior ports. On the other hand, however, global variables need

15

CHAPTER 4. C CODE CONVERSION 16

to be localized and any accesses to formely global variables have to be routed through ports
of the hierarchy.

4.1.2 Semantic Refinement

On top of syntactic refinement, semantic refinement is concerned with removing artifical
restrictions imposed on the description by the limitations of the semantics of the C language.
Based on the extended semantics of the system-level design language, the specification is
refined to model the desired system behavior in a more natural way.

The main aspect of semantic refinement is to expose all available parallelism in the
specification using parallel and pipelined compositions of the SpecC language wherever
possible. Neither the concept of pipelining nor parallelism exists within the C language.
However, to efficiently perform exploration, a system level design model must explicitly
provide these two concepts.

Parallel Two behaviors are combined in a parallel composition (par construct) if the ex-
ecution sequence of the two behaviors does not influence the simulation result. Oth-
erwise, the two behaviors are defined as behavior-sequential.

Pipelined If, within a sequential programming model, a number of behaviors are executed
one after another in a loop body, and one behavior communicates only with the next
behavior, then the behaviors should be composed in a pipelined fashion (pipe con-
struct).

4.2 Basic Constructs

In this section, we specify guidelines for C to SpecC translation for different control state-
ments by recognizing some basic patterns in a typical input C program.

4.2.1 If (no else) Statement

An If statement (Figure 4.1(a)) is clean, if the code inside the braces of the if condition (If
Clean Code Segment) is a sequence of data statements only and if there are no calls to other
behaviors. For this type of statement, we can get valid SpecC code just by wrapping the
whole block of the If statement as is into a leaf behavior.

An If statement (Figure 4.1(b)) is unclean, if the code inside the braces of the if condi-
tion (If Unclean Code Segment) is a composite of data statements as well as calls to other
behaviors. Start and End states are fictitious dummy states which correspond to entrance
and exit, respectively inside If fsm block. First task for converting this type of code is
transforming If Unclean Code Segment into a composite behavior which is clean in SpecC.

CHAPTER 4. C CODE CONVERSION 17

C Code
(a) Cl ea n Code
If(cond) {

Clean code segment

}

(b) U n c l ea n Code
If(cond) {

U nclean code segment
}

S p ec C T r a n s f or m a t i on

(a)

(b)

I f (cond){
I f Clean code
segment
}

Behavior encapsulating if code

s t a r t

I f (cond)y es

noU nclean code
S egment(i f)

E nd
Behavior (If)

I f_ fsm _ b lock
F S M representing if statem ent

Figure 4.1: If statement.

If condition check can be transformed to a Yes/No FSM (Finite State Machine) as it resem-
bles decision making. If the condition is satisfied then the behavior representing If Unclean
Code Segment will be called.

4.2.2 If Else Statement

An If Else statement (Figure 4.2) differs from an If statement (Figure 4.1) on including an
Else part. An If statement is a subset of an If Else statement since an If statement does not
have an Else part. An If Else statement (Figure 4.2(a)) is clean if the code inside the braces
of if condition (If Clean Code Segment) and else condition (Else Clean Code Segment) are
sequences of just data statements and there are no calls to other behaviors. For this type of
statement, we can get valid SpecC code just by wrapping the whole blocks of If Clean Code
Segment and Else Clean Code Segment with the condition check into a leaf behavior.

An If Else statement (Figure 4.2(b)) is unclean if it satisfies one of the conditions below:

(a) If part Code Segment is Unclean

(b) Else part Code Segment is Unclean

(c) Both If and Else Code Segments are Unclean

To derive a valid SpecC code, first we need to make one composite behavior for each of
If and Else Unclean code segments. Then, we can introduce Yes/No FSM for the condition
check. If the condition is satisfied, we make a call to the If composite behavior. Otherwise,
we call the Else composite behavior.

CHAPTER 4. C CODE CONVERSION 18

C Code
(a) Cl ea n Code
If(cond) {

If Clean code segment
}E l s e {

E lse Clean code segment
}

(b) U n c l ea n Code
If(cond) {

If U nclean code segment
}

E l s e {
E lse U nclean code segment

} Unclean code
s eg m ent (els e)

SpecC T r a n s f o r m a t i o n

start

I f (cond)y es no

Unclean code
s eg m ent (i f)

E n d
Behavior (If)

Behavior encapsulating if else code

If_else_fsm

Behavior (E l s e)

F S M representing if else statem ent

I f (cond){
I f C lean code s eg m ent

}E ls e{
E ls e C lean code S eg m ent

}

Unclean code
s eg m ent (els e)

SpecC T r a n s f o r m a t i o n

(b)

start

I f (cond)y es no

Unclean code
s eg m ent (i f)

E n d
Behavior (If)

(a)

Behavior encapsulating if else code

If_else_fsm

Behavior (E l s e)

F S M representing if else statem entF S M representing if else statem ent

I f (cond){
I f C lean code s eg m ent

}E ls e{
E ls e C lean code S eg m ent

}

Figure 4.2: If Else statement.

4.2.3 While Statement

A While statement (Figure 4.3(a)) is clean if While Clean Code Segment is a sequence of
just data statements and there are no calls to other behaviors. For this type of statement,
we can get valid SpecC code just by wrapping the whole block of the While statement as is
into a leaf behavior.

A While statement (Figure 4.3(b)) is unclean if While Unclean Code Segment is a com-
posite of data statements as well as calls to other behaviors. First step in converting this type
of code is transforming While Unclean Code Segment into a composite behavior which is
clean in SpecC. If condition check can be transformed to a Yes/No FSM as it resembles
decision making. If the condition is satisfied then the behavior representing While Unclean
Code Segment will be called and then the control loops back to the condition checking. This
will repeat until the condition becomes false. Then, Exit state (End) will be called which
signifies end of the while statement.

4.2.4 Do While Statement

A Do While statement (Figure 4.4) is just a small modification to the While statement
(Figure 4.3). In the While statement, the condition is checked first before executing While
(Un)clean Code Segment. On the contrary, in the Do While statement, first the Do While
(Un)clean Code Segment is executed and then the condition is checked.

A Do While statement (Figure 4.4(a)) is clean if Do While Clean Code Segment is a
sequence of just data statements and there are no calls to other behaviors. For this type of

CHAPTER 4. C CODE CONVERSION 19

C Code
(a) Cl ea n Code
While(cond) {

While Clean code segment
}

(b) U n c l ea n Code
While(cond) {

U nclean code segment
}

S p ec C T r a n s f or m a t i on
(a)

(b)

While(cond) {
w hile C lea n code
s eg m ent
}

Behavior encapsulating while code

B ehav ior (w hile)

s t a r t

I f (cond)y es
no

U nclean code
segment(w hile) E nd

while_fsm_block

FSM representing while statement

Figure 4.3: While statement.

statement, we can get valid SpecC code just by wrapping the whole block of the Do While
statement as is into a leaf behavior.

A Do While statement (Figure 4.4(b)) is unclean if Do While Unclean Code Segment
is a composite of data statements as well as calls to other behaviors. First step in convert-
ing this type of code is transforming Do While Unclean Code Segment into a composite
behavior which is clean in SpecC. If condition check can be transformed to a Yes/No FSM
as it resembles decision making. When executed, first the behavior representing Do While
Unclean Code Segment is called then the If condition checked with Yes/No FSM. If the
condition satisfies, then the behavior representing Do While Unclean Code Segment will be
called and then the control loops back to Yes/No FSM. This will repeat until the condition
becomes false. Then, Exit state (End) will be called which signifies end of the do while
statement.

4.2.5 For Statement

A For statement (Figure 4.5) is just a small modification to the While statement (Figure 4.3).
In the While statement, there is only one block of code (While (Un)clean Code Segment)
where as in the For statement, along with For (Un)clean Code Segment there are two more
blocks of code. One block is init statements and the other is post statements. Init statements
are executed once at the start of the For statement block. Post statements are executed
everytime the For (Un)clean Code Segment is executed.

A For statement (Figure 4.5(a)) is clean if For Clean Code Segment is a sequence of just
data statements and there are no calls to other behaviors. For this type of statement, we can

CHAPTER 4. C CODE CONVERSION 20

C Code

(a) Clean Code
do {

do while Clean code segment
}While(cond)

(b) U nc lean Code

S p ec C T r a n s f or m a t i on

(a)

(b)

s t a r t

I f (c o n d)

y e s

U nclean code
segment
(do while)

E n d

d o _ w hile_ f s m _ b lo c k

n o

do{
do while Clean
code segment
} W hile(cond)

Behavior encapsulating do while code

F S M r ep r es en t in g d o w hile s t a t em en tF S M r ep r es en t in g d o w hile s t a t em en t

do {
do while U nClean code segment
}While(cond)

Figure 4.4: Do While statement.

C Code

(a) Cl ea n Code
for(init; c ond ; p os t) {

for Clean code segment
}

(b) U n c l ea n Code
for(init; c ond ; p os t) {

for U nclean code segment
}

S p ec C T r a n s f or m a t i on
(a)

(b)

� ��� � � � � � � 	 � �
 � � � � �
 �
� ������� � � ��	 �
 �
��� � ��� � �
�

��� ��� �� !�"�� #�$ � % &�')(� * # +-,)!/.0�) (�/$!),��

If (c o n d)y e s
no

U nclean code
segment(for) E nd

M ai n B eh av i or (for)

fo r _ fs m _ b l o c k
s ta rt

initinit

p os tp os t
B eh av i or (p ost)

B eh av i or (i ni t)

F S M r e p r e s e n t i n g fo r s t a t e m e n t

Figure 4.5: For statement.

CHAPTER 4. C CODE CONVERSION 21

get valid SpecC code just by wrapping the whole block of the For statement as is into a leaf
behavior.

A For statement (Figure 4.5(b)) is unclean if For Unclean Code Segment is a compos-
ite of data statements as well as calls to other behaviors. First step in converting this type
of code is transforming For Unclean Code Segment into a composite behavior which is
clean in SpecC. Then transform init and post statements to appropriate clean SpecC behav-
iors. Generally, init and post statements contain some variable initialization, increment and
decrement operations. So, they can be easily translated to leaf behaviors if they contain
just the data statements and no calls to other behaviors. Otherwise, they are transformed to
composite behaviors. Condition check can be transformed to a Yes/No FSM as it resembles
decision making.

When executed, first the behavior representing Init statement is called once and then
the Yes/No FSM is called. If the condition is satisfied then the behavior representing For
Unclean Code Segment will be called followed by Post behavior and then the control loops
back to Yes/No FSM. This loop will repeat until the condition becomes false. Then, Exit
state (End) will be called which signifies end of the for statement.

4.3 Composite Constructs

This section deals with translating C code with various combinations of basic constructs
into SpecC code.

4.3.1 Clean While and If Statements

C Code
(a) Cl ea n Code
While(cond) {
while Clean code segment
I f (cond_ if) {
I f _ Clean code
} / / if
else{
E lse_ Clean code
} / / else
} / / while

S p ec C t r a n s f or m a t i on
(a)

W hile(cond) {
W hile Clean code segment
I f (cond_ if) {
I f _ Clean code
} / / if
else{
E lse_ Clean code
} / / else
} / / while

Behavior encapsulating while if code

Figure 4.6: Combination of clean While and If statements.

A While statement is combined with an If statement as Figure 4.6 depicts. But both
statements are clean. So, the translation is simple as we wrap both these statements into a

CHAPTER 4. C CODE CONVERSION 22

simple leaf behavior.

4.3.2 Unclean While and If Else Statements

While(cond) {
w hile u nC lea n code s eg m ent

I f (cond_ if) {
I f _ u nC lea n code
} / / if
els e{
E ls e_ u nC lea n code
} / / els e

} / / w hile
If_fsm_block

Figure 4.7: Combination of unclean While and If Else statements.

In Figure 4.7, a While statement which is unclean is combined with an If Else state-
ment. The unclean While statement translation is done according to Figure 4.3 and the If
Else statement translation is done according to Figure 4.2. Since the If Else statement is a
sequence to While Unclean Code Segment, a new finite state (if fsm block) is introduced
just after the behavior representing While Unclean Code Segment. So, the final translation
is nothing but plugging the right FSMs which represent the basic building blocks at the right
places (Figure 4.8).

Figure 4.9 shows another example that differs from the previous combination (Fig-
ure 4.7) in the sequence of execution of If Else and While Unclean Code Segment. As
the Figure 4.10 illustrates, the While Unclean Code Segment is the sequence to the If Else
statement. Appropriate changes (flipping the basic blocks) are made to the sequence of
execution in Figure 4.10 which differs from Figure 4.8.

4.4 Example

Figure 4.11 depicts a complex nesting of one for loop, two Do while loops, one If Else
statement and one While loop. Here, only While block has calls to other behaviors. While
block is a Composite behavior having two sequential leaf behaviors named leaf behavior 1
and leaf behavior 2. The code segments in all other blocks are clean as they only have
data statements. But, since While block is the inner most block inside the nesting, it is
propagating unclean behavior to the If Else block. The If Else block, in turn makes the Do

CHAPTER 4. C CODE CONVERSION 23

SpecC t r a n s f o r m a t i o n

(b)

If_fsm_block

FSM representing while if statement

Unclean code
s eg m ent (els e)

start

I f (cond)y es no

Unclean code
s eg m ent (i f)

E n d

Behavior (If) Behavior (E l s e)

Unclean code
s eg m ent (els e)

start

I f (cond)y es no

Unclean code
s eg m ent (i f)

E n d

Behavior (If) Behavior (E l s e)

Unclean code
s eg m ent (els e)

start

I f (cond)y es no

Unclean code
s eg m ent (i f)

E n d

Behavior (If)

Unclean code
s eg m ent (els e)

start

I f (cond)y es no

Unclean code
s eg m ent (i f)

E n d

Behavior (If) Behavior (E l s e)

Unclean code
s eg m ent (els e)

start

I f (cond)y es no

Unclean code
s eg m ent (i f)

E n d

Behavior (If) Behavior (E l s e)

Unclean code
s eg m ent (els e)

start

I f (cond)y es no

Unclean code
s eg m ent (i f)

E n d

Behavior (If) Behavior (E l s e)

w h i le _fsm_block
start

If(cond)y e s
n o

U ncl e a n code
s e g m e nt (w h i l e) E n d
B e h a v i or (w h i l e)

If_fsm_block

Figure 4.8: FSM for combination of unclean While and If Else statements.

while u n C lea n c o d e s eg m en t

I f _ f s m _ b lo c k

Figure 4.9: Second combination of unclean While and If Else statements.

CHAPTER 4. C CODE CONVERSION 24

If_fsm_block

FSM representing while if statement

Unclean code
s eg m ent (els e)

start

I f (cond)y es no

Unclean code
s eg m ent (i f)

E n d
Behavior (If) Behavior (E l s e)

Unclean code
s eg m ent (els e)

start

I f (cond)y es no

Unclean code
s eg m ent (i f)

E n d
Behavior (If) Behavior (E l s e)

Unclean code
s eg m ent (els e)

start

I f (cond)y es no

Unclean code
s eg m ent (i f)

E n d
Behavior (If)

Unclean code
s eg m ent (els e)

start

I f (cond)y es no

Unclean code
s eg m ent (i f)

E n d
Behavior (If) Behavior (E l s e)

Unclean code
s eg m ent (els e)

start

I f (cond)y es no

Unclean code
s eg m ent (i f)

E n d
Behavior (If) Behavior (E l s e)

Unclean code
s eg m ent (els e)

start

I f (cond)y es no

Unclean code
s eg m ent (i f)

E n d
Behavior (If) Behavior (E l s e)

while_fsm_blockwhile_fsm_block
start

I f (cond)
y e s n o

E n d

Unclean code
s eg m ent (w h i le)
B eh av i or (w h i le)

Unclean code
s eg m ent (w h i le)
B eh av i or (w h i le)

If_fsm_block

Figure 4.10: FSM for second combination of unclean While and If Else statements.

CHAPTER 4. C CODE CONVERSION 25

for(init; cond; post){
clean code segment 1;
do{

clean code segment 2;
do{

clean code segment 3;
if(cond_if){

clean code segment 4;

}//if
else{

while(cond_while){

leaf_bahavior_1.main();
leaf_bahavior_2.main();

}//while
}//else

}while(cond_do_while_2);
}while(cond_do_while_1);

}//for

For block

Do While block 1

Do While block 2

If Else block

While block

For block

Do While block 1

Do While block 2

If Else block

While block

Figure 4.11: Complex example of nesting.

While block 2 unclean. The Do While block 2 makes the Do While block 1 unclean which
in turn makes the For block unclean. So, this is like a ripple effect where unclean behavior
in the deepest child behavior makes the top most parent unclean.

We can adopt two approaches to get a valid SpecC code out of this huge complex nesting
of different basic blocks: a top-down or a bottom-up approach.

When we apply a top-down flow on Figure 4.11, ordering follows this pattern:

1. For Block

2. Do While Block 1

3. Do While Block 2

4. If Else Block

5. While Block

If we follow a bottom-up approach, the order is reversed. First we work on the inner
most block, make it clean, then work on the its immediate parent block and so on, till we
reach the top most block.

For this example, we will show a top-down approach in making this complex example
clean.

4.4.1 Translation: Step 1

While working on the top most block, we abstract the next level block and we include it
as a child behavior. The For block (Figure 4.12) has a small modification from Figure 4.5.
Figure 4.5 contains a behavior encapsulating a for unclean code segment but Figure 4.12 has
a composite behavior with two sequential behaviors. One of the two sequential behaviors
is the leaf behavior encapsulating clean code segment 1 and the other one is abstracted
Do While behavior 1.

CHAPTER 4. C CODE CONVERSION 26

SpecC r epr es en t a t i o n

clean code
s eg m ent (f or)

D o_ w h i le
b eh av i or _ 1

clean code
s eg m ent (f or)

D o_ w h i le
b eh av i or _ 1

Hierarchial B ehav io r

If (c o n d)yes
n o

U nclean code
s eg m ent (f or) E n d

M ai n B eh av i or (f or)

fo r _ fs m _ b l o c kst a r t

i n i t

p o st
B eh av i or (p os t)

B eh av i or (i ni t)

If (c o n d)yes
n o

U nclean code
s eg m ent (f or) E n d

fo r _ fs m _ b l o c kst a r t

i n i ti n i t

B eh av i or (p os t)

B eh av i or (i ni t)

FSM representing for and do while blocks

Figure 4.12: Step 1 - For Block.

4.4.2 Translation: Step 2

Do while Block 1 (Figure 4.13) is a parent to Do while Block 2. We can abstract the lat-
ter as a simple behavior following the execution of clean code segment 2. So, the sim-
plest translation possible is embedding clean code segment 2 into a leaf behavior and ab-
stracting Do while Block 2 as a simple behavior. Finally, by modifying Figure 4.4 so
that the hierarchial behavior reflects two sequential behaviors (clean code segment 2 and
Do While block 2) in substitution of the unclean code segment, we get a valid SpecC
translation.

4.4.3 Translation: Step 3

Step 3 (Figure 4.14) is similar to step 2 (Figure 4.13) except that Do while Block 2 has
If Else block as the child block.

4.4.4 Translation: Step 4

If Else block (Figure 4.15) has While block as the child block and Figure 4.15 depicts the
difference from Figure 4.2 in that else block is a composite sequential behavior consisting
of a clean leaf behavior for clean code segment 3 and an abstracted while (child) behavior.

4.4.5 Translation: Step 5

Step 5 (Figure 4.16) depicts the inner most while block. This while block has a se-
quence of two behaviors named leaf behavior 1 and leaf behavior 2. Figure 4.16 depicts

CHAPTER 4. C CODE CONVERSION 27

FSM representing do while blocks

start

I f (cond)

Unclean code
s eg m ent
(do w h i le)

E n d

do_ while_ f sm _ block

start

I f (cond)
y e s

Unclean code
s eg m ent
(do w h i le)

E n d

do_ while_ f sm _ block

n o

c l e an c o d e
S e g m e n t 2
(d o w h i l e 1)

D o _ w h i l e
b e h av i o r_ 2

SpecC r epr es en t a t i o n

Figure 4.13: Step 2 - Do While Block 1.

FSM representing do while blocks

start

I f (cond)

y e s

Unclean code
s eg m ent
(do w h i le)

E n d

do_ while_ f sm _ block

n o

start

I f (cond)

y e s

Unclean code
s eg m ent
(do w h i le)

E n d

do_ while_ f sm _ block

n o

c l e an c o d e
S e g m e n t 3
(d o w h i l e 2)

I f _ E l se
b e h av i o r

Specc transformation

Figure 4.14: Step 3 - Do While Block 2.

CHAPTER 4. C CODE CONVERSION 28

FSM representing if else and while blocks

While
b eha v io r

Unclean code
s eg m ent (els e)

start

I f (cond)y es no

Unclean code
s eg m ent (i f)

E n d

Behavior (If) Behavior (E l s e)

Unclean code
s eg m ent (els e)

start

I f (cond)y es no

s eg m ent (i f)

E n d

Behavior (If) Behavior (E l s e)

Unclean code
s eg m ent (els e)

start

I f (cond)y es no

s eg m ent (i f)

E n d

Behavior (If)

Unclean code
s eg m ent (els e)

start

I f (cond)y es no

s eg m ent (i f)

E n d

Behavior (If) Behavior (E l s e)

Unclean code
s eg m ent (els e)

start

I f (cond)y es no

s eg m ent (i f)

E n d

Behavior (If) Behavior (E l s e)

s eg m ent (els e)

start

I f (cond)y es no

)

E n d

Behavior (If)

If_else_fsm
Behavior (E l s e)

Specc transformation

Figure 4.15: Step 4 - If Else Block.

start

If(cond)
y e s

n o
U ncl e a n code
s e g m e nt (w h i l e)

E n d

while_fsm_block

FSM representing while blocks

Leaf_behavior 1

Leaf_behavior 2

Leaf_behavior 1

Leaf_behavior 2

Specc transformation

Figure 4.16: While Block.

CHAPTER 4. C CODE CONVERSION 29

the difference from Figure 4.3 in that there is a composite sequential behavior containing
leaf behavior 1 and leaf behavior 2.

Acknowledgments

This manual is based on work by the authors, including contributions by Kiran Ramineni
[4, 5, 6].

In addition, the details of the SpecC design flow in general were shaped and influenced
to a large extend by all the authors of the tool set that is the basis of SCE: Samar Abdi,
Lucai Cai, Junyu Peng, Dongwan Shin, and Haobo Yu.

Finally, SpecC technology would not exist at all today without the vision of Prof. Daniel
D. Gajski.

30

References

[1] A. Gerstlauer, R. Dömer, J. Peng, D. Gajski. System Design: A Practical Guide with
SpecC. Kluwer Academic Publishers, 2001.

[2] R. Dömer, A. Gerstlauer, D. Gajski. SpecC Language Reference Manual, Version 2.0.
SpecC Technology Open Consortium (STOC), Japan, December 2002.

[3] SpecC Technology Open Consortium. http://www.specc.org.

[4] A. Gerstlauer, K. Ramineni, R. Dömer, D. Gajski. System-On-Chip Specification
Style Guide. CECS Technical Report 03-21, Center for Embedded Computer Sys-
tems, Irvine, June 2003.

[5] A. Gerstlauer. SpecC Modeling Guidelines. CECS Technical Report 02-16, Center for
Embedded Computer Systems, Irvine, April 2002.

[6] K. Ramineni, D. Gajski. C To SpecC Conversion Style. CECS Technical Report 03-
13, Center for Embedded Computer Systems, Irvine, April 2003.

31

	1 Introduction
	1.1 SCE Methodology
	1.2 SpecC Language
	1.3 Specification Model

	2 Modeling Guidelines
	2.1 Computation
	2.1.1 Granularity
	2.1.2 Hierarchy
	2.1.3 Encapsulation
	2.1.4 Concurrency
	2.1.5 Time

	2.2 Communication
	2.2.1 Semantics
	2.2.2 Dependencies

	3 Modeling Style
	3.1 Computation
	3.1.1 Leaf Behaviors
	3.1.2 Hierarchical Behaviors

	3.2 Communication
	3.2.1 Behavior Interfaces (Ports)
	3.2.2 Connectivity (Variables and Channels)

	4 C Code Conversion
	4.1 Code Refinement
	4.1.1 Syntactic Refinement
	4.1.2 Semantic Refinement

	4.2 Basic Constructs
	4.2.1 If (no else) Statement
	4.2.2 If Else Statement
	4.2.3 While Statement
	4.2.4 Do While Statement
	4.2.5 For Statement

	4.3 Composite Constructs
	4.3.1 Clean While and If Statements
	4.3.2 Unclean While and If Else Statements

	4.4 Example
	4.4.1 Translation: Step 1
	4.4.2 Translation: Step 2
	4.4.3 Translation: Step 3
	4.4.4 Translation: Step 4
	4.4.5 Translation: Step 5

	Acknowledgments
	References

