Lecture 12 – System-Level Design Tools

Andreas Gerstlauer
Electrical and Computer Engineering
University of Texas at Austin
gerstl@ece.utexas.edu

Lecture 12: Outline

- **Overview**
 - System-level design landscape

- **System-level design tools**
 - Commercial tools
 - Academic tools

- **SCE commercialization**
 - ELEGANT environment
 - Specify-Explore-Refine (SER) tools
Electronic System-Level (ESL) Landscape

Transaction-Level Models (TLM)
- Instruction-set simulator (ISS)
- SystemC, CoWare, ...
- Mentor Catapult, Forte, ...
- Commercial tools for modeling and simulation
- Algorithmic modeling (MoC) [UML, Matlab/Simulink, Labview]
- Virtual system prototyping (TLM) [Coware, VaST, Virtutech]
 - Only horizontal integration across models / components

Software / Hardware Synthesis Back-End
- Green Hills, gcc, VxWorks, ...
- Academic tools for synthesis and verification
- MPSoC synthesis [SCE, Metropolis, SCD, PeaCE, Deadalus]
 - Vertical integration for path to implementation

ESL Tools

- Electronic System-Level (ESL) terminology misused
 - Often single hardware unit only (high-level HW synthesis)

- System-level has to span across hardware and software
 - System-level frontend
 - Hardware and software synthesis backend

- Commercial tools for modeling and simulation
 - Algorithmic modeling (MoC) [UML, Matlab/Simulink, Labview]
 - Virtual system prototyping (TLM) [Coware, VaST, Virtutech]
 - Only horizontal integration across models / components

- Academic tools for synthesis and verification
 - MPSoC synthesis [SCE, Metropolis, SCD, PeaCE, Deadalus]
 - Vertical integration for path to implementation
Commercial Tools (1)

- CoFluent
 - SystemC-based modeling and simulation
 - Networks of timed processes
 - Communication through queues, events, variables
 - Early, high-level interactive design space exploration
 - Graphical application, architecture and mapping capture
 - Fast TLM simulation with estimated timing

- Space Codesign
 - Graphical application, architecture and mapping capture (Eclipse)
 - Process network with message-passing or shared-memory channels
 - SystemC TLM simulation
 - Annotated, host-compiled or cycle-accurate ISS models
 - FPGA-based prototyping
 - Cross-compilation and third-party hardware synthesis (Forte/Catapult)

Commercial Tools (2)

- CoWare
 - Virtual system platforms
 - SystemC TLM capture, modeling and simulation
 - Extensive library of IP, processor and bus models
 - Application-specific processor ISS models (LISAtak acquisition)
 - Proprietary SystemC simulation framework
 - Optimized SystemC kernel
 - Graphical debugging, visualization and analysis capabilities

- Soc Designer
 - Proprietary, C++ based modeling and simulation
 - Fast, statically scheduled cycle-accurate simulation
 - Special cycle-callable component models

- VaST and Virtutech
 - Proprietary SW-centric virtual platform modeling and simulation
 - Fast, cycle-approximate binary translated or compiled ISS + peripherals
Academic Tools

- **Metropolis**
 - Platform-based design (PBD)
- **SystemCoDesigner**
 - Dynamic dataflow MoC
 - Automated design space exploration
- **Daedalus**
 - KPN MoC for streaming, multi-media applications
 - IP-based MPSoC assembly
- **PeaCE**
 - “Ptolemy extension as a Codesign Environment”
 - Recent extensions for software development (HoPES)
- **SCE**
 - SpecC-based “System-on-Chip Environment”
 - Successive, stepwise Specify-Explore-Refine methodology

Academic Tools: Metropolis

- **Platform-based**
 - Pre-defined target architecture
 - Reuse
- **Meet-in-the-middle**
 - Platform mapping and configuration

- **General, proprietary meta-modeling language**
 - Capture function, architecture and mapping
- **Modeling framework**
 - Built-in parsing and simulation
 - Back-end point tool integration
Academic Tools: SystemCoDesigner

- **SysteMoC input model**
 - Dynamic dataflow MoC (actors + FSMDs) in SystemC
- **Fully automatic, multi-objective design space exploration**
 - Multi-objective evolutionary algorithms (MOEAs)

Academic Tools: Daedalus

- **KPN input model**
- **System assembly and simulation**

- **XML-based open infrastructure**
 - KPN input model
 - System assembly and simulation

© 2011 A. Gerstlauer
Academic Tools: PeaCE

- **Ptolemy-based**
 - Heterogeneous SDF+FSM application MoC

- **Stepwise flow**
 - Application partitioning
 - Communication architecture exploration
 - Code and interface generation

- **Software extensions: HOPES**
 - Parallel programming API
 - Multi-processor code generation

System-On-Chip Environment (SCE)

- Specification
- System Design
 - Architecture Exploration
 - Scheduling Exploration
 - Network Exploration
 - Communication Synthesis
- TLM
- System models
- Hardware Synthesis
- Software Synthesis
- SW DB
- RTL DB
- Implementation Model
- Compile onto MPSoC platform
- Synthesize target HW/SW
- PE/OS Models
- CE/Bus Models
- RTM
- SW
- HW
- Compiler
- IMPL
- CPU
- m

© 2011 A. Gerstlauer
Academic MPSoC Design Tools

<table>
<thead>
<tr>
<th>Approach</th>
<th>DSE</th>
<th>Comp. decision</th>
<th>Comm. decision</th>
<th>Comp. refine</th>
<th>Comm. refine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daedalus</td>
<td>●</td>
<td>●</td>
<td>○</td>
<td>●</td>
<td>○</td>
</tr>
<tr>
<td>Koski</td>
<td>●</td>
<td>●</td>
<td>○</td>
<td>●</td>
<td>○</td>
</tr>
<tr>
<td>Metropolis</td>
<td></td>
<td>○</td>
<td>○</td>
<td>●</td>
<td>○</td>
</tr>
<tr>
<td>PeaCE/HoPES</td>
<td>○</td>
<td>○</td>
<td>●</td>
<td>○</td>
<td>●</td>
</tr>
<tr>
<td>SCE</td>
<td></td>
<td>○</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>SystemCoDesigner</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

Lecture 12: Outline

✓ Overview
 ✓ System-level design landscape

✓ System-level design tools
 ✓ Commercial tools
 ✓ Academic tools

• SCE commercialization
 • ELEGANT environment
 • Specify-Explore-Refine (SER) tools
ELEGANT Environment

Source: InterDesign Technologies, Inc. / Japanese Aerospace Exploration Agency (JAXA)

ELEGANT SpaceWire Evaluation

- **SpaceWire**: aerospace communication protocol standard
 - High-speed and high-reliability interconnection network
 - Asynchronous, fault-tolerance, topology agnostic
 - **Automated SpaceWire design with ELEGANT tool set**
 - From top-level specification model down to HW/SW
 - HW/SW partitioning and exploration of the architecture with SER
 - Synthesis down to SpaceCube prototyping platform

Source: Japanese Aerospace Exploration Agency (JAXA)
ELEGANT MPEG4 Decoder Evaluation

- MPEG4 decoder implementation
 - Third-party evaluation by JAXA and Applistar, Inc.

MPEG4 decoder

input: QCIF size, simple profile

VLD → DEQ → IDCT → MD → MC → mem → output: QCIF size, YUV format

VLD: variable length decoding
DEQ: de-quantization
IDCT: inverse discrete cosine transform
MD: motion vector decoding
MC: motion compensation

Explore design alternatives by SER

1. HR5000 MIPS 5kf
2. HR5000 MIPS 5kf
3. HR5000 MIPS 5kf
4. HR5000 MIPS 5kf

All MPEG4 decoder on SW

HR5000 200MIPS-class 64-bit MPU for space apps.
- MIPS5kf core
- Eureka ES510 system controller

ELEGANT MPEG4 Design Explorations

- Final implementation delays simulated using single testbench
 - Synthesis to RTL and cycle-accurate (CA) model
 - Synthesis from SER-generated pin-accurate communication model (PAM)
 - FPGA model is CA-SpecC model generated by NEC’s CyberWorkbench
 - Co-simulation with ELEGANT system model
 - HR5000 CPU model is generated by SER
 - Back-annotated timing with Fastveri for SW behaviors

- Comparison of design alternatives

Decoding delay [s]

CPU CPU+IDCT CPU+MC CPU+2xHW

HR5000 MIPS 5kf

80MHz CPU/bus/HW clock freq. achieves 30 frames/s performance

- Performance estimation
 - Target performance (30 frames/s) can be estimated/verified
Lecture 12: Summary

- **System-level design tools**
 - Commercial focus still only on modeling and simulation
 - Academic approaches towards true system-level design
 - Emerging commercial backend HW/SW synthesis
 - Complete, automated system design flow
 - From specification to implementation

- **ELEGANT environment**
 - Full industrial system-level design solution
 - Integrated tools for modeling, synthesis & verification
 - Deployed in, e.g. NEC Toshiba Space Systems