
System-on-a-Chip (SoC) Design 
EE382V, Fall 2014 

Homework #2 
Assigned: September 25, 2014 
Due:     October 12, 2014 

 
Instructions: 

• Please submit your solutions via Canvas. Submissions should include a single PDF with 
the writeup and single Zip or Tar archive for source code. 

• You may discuss the problems with your classmates but make sure to submit your own 
independent and individual solutions.  
 

Problem 1: Task Scheduling (50 points) 
Consider a system that periodically executes the following graph of tasks with dependencies, 
(precedence constraints). Due to the dependencies, all tasks need to run at the same rate with a 
common period of 15 while all precedence relationships are maintained within each period. In 
addition, however, tasks may individually have stricter deadlines (relative to the start of the 
graph’s period). Task execution times Ti and relative deadlines Di are as indicated in the graph. 
Assume that tasks A and B are ready to execute at the beginning of each period. 
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(a) What is the utilization of a single processor running the tasks? 

(b) Apply an EDF algorithm and show the schedule for one period (relative to the start of the 
period), i.e. for one execution of the graph.  

(c) In the presence of dependencies, EDF is no longer optimal in guaranteeing to find a 
schedule if it exists. However, a modified EDF* strategy becomes optimal by adjusting 
the deadlines of individual tasks to take their successors into account. This is done by 
starting with the sinks of the graph (nodes with no successors) and successively 
propagating deadlines that are adjusted for execution times upwards through the graph. 
Every time a deadline is propagated to a predecessor, the execution time of the current 
node is subtracted (such that it is guaranteed that the node will have enough time to 
execute once the predecessor has finished). At each node, a new deadline is then 
computed to be the smaller of its original deadline and of the minimum over adjusted 
deadlines propagated upwards from all its successors. Indicate the dependency-adjusted 
deadlines in the original task graph above and show the resulting EDF* schedule. 



(d) Show the EDF* schedule for the task graph with adjusted deadlines executed on two 
processors. Assume that tasks can migrate between processors freely, i.e. strictly follow a 
strategy in which at any point in time the two tasks with the highest priority are running. 

(e) Does any uni-processor, priority-based scheduling of tasks with dependencies ever 
require preemption? If so, under what conditions? If not, why not? How about in priority-
based multi-processor scheduling? 

(f) EDF-type scheduling algorithms are only optimal in uni-processor systems. In systems 
with multiple processors/cores, there is no known optimal, tractable (polynomial 
complexity) scheduling strategy. What can be done, however, is to statically partition 
tasks onto processors in a fixed, pre-defined manner and then run a regular scheduling 
algorithm on each processor. Assuming no precedence constraints and no deadlines other 
than the end of the period, how many processors are needed to run the given task set in a 
period of 5 time units? Show a possible assignment of tasks to processors. 

 

Problem 2: Task Partitioning (50 points) 
In class and the homework we only looked at a simplified version of the Kernighan-Lin  
algorithm. The full Kernighan-Lin algorithm looks at complete sequences of node swaps. In each 
iteration of the algorithm, a set of possible partition candidates is constructed by consecutively 
swapping nodes that have not been swapped before and that result either in the largest gain or 
least loss in inter-partition communication cost per swap (i.e. considering intermediate swaps 
that may increase cost). The set of candidates is complete when all nodes have been considered 
for swapping, i.e. the graph is mirrored. Out of this set of candidate partitions, the algorithm 
selects the partition with the least cost, i.e. it actually only executes the partial subsequence of 
swaps that leads to the largest overall reduction in cost. This process (of constructing candidates 
and selecting the best) is repeated until no more gains can be achieved (there is no candidate that 
leads to any reduced cost).  

Consider the following task graph with uniform communication costs per edge and initial 
partitioning: 
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(a) Apply the full Kernighan-Lin algorithm to the task graph. Show the swap sequences, 
actually selected partitions and communication costs in each iteration of the algorithm. 



(b) Can this algorithm still get stuck in a local minimum? Why or why not? 

(c) How could this algorithm be extended to take computation costs and scheduling into 
account. Assume that tasks are periodic and that communication costs do not represent 
actual tasks dependencies (precedence constraints), but rather generally the fact whether 
two tasks ever exchange data or not (required connections).  

(d) How could this algorithm be extended to support general n-way partitioning, i.e. more 
than two partitions?  
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