
System-on-a-Chip (SoC) Design
EE382V, Fall 2014

Homework #2
Assigned: September 25, 2014
Due: October 12, 2014

Instructions:

• Please submit your solutions via Canvas. Submissions should include a single PDF with
the writeup and single Zip or Tar archive for source code.

• You may discuss the problems with your classmates but make sure to submit your own
independent and individual solutions.

Problem 1: Task Scheduling (50 points)
Consider a system that periodically executes the following graph of tasks with dependencies,
(precedence constraints). Due to the dependencies, all tasks need to run at the same rate with a
common period of 15 while all precedence relationships are maintained within each period. In
addition, however, tasks may individually have stricter deadlines (relative to the start of the
graph’s period). Task execution times Ti and relative deadlines Di are as indicated in the graph.
Assume that tasks A and B are ready to execute at the beginning of each period.

C

B

E

D
G

F

TB = 2
DB = 10

TD = 2
DD = 14

TC = 2
DC = 12 TE = 2

DE = 15

TF = 4
DF = 10

TG = 2
DG = 14

A

TA = 1
DA = 5

(a) What is the utilization of a single processor running the tasks?

(b) Apply an EDF algorithm and show the schedule for one period (relative to the start of the
period), i.e. for one execution of the graph.

(c) In the presence of dependencies, EDF is no longer optimal in guaranteeing to find a
schedule if it exists. However, a modified EDF* strategy becomes optimal by adjusting
the deadlines of individual tasks to take their successors into account. This is done by
starting with the sinks of the graph (nodes with no successors) and successively
propagating deadlines that are adjusted for execution times upwards through the graph.
Every time a deadline is propagated to a predecessor, the execution time of the current
node is subtracted (such that it is guaranteed that the node will have enough time to
execute once the predecessor has finished). At each node, a new deadline is then
computed to be the smaller of its original deadline and of the minimum over adjusted
deadlines propagated upwards from all its successors. Indicate the dependency-adjusted
deadlines in the original task graph above and show the resulting EDF* schedule.

(d) Show the EDF* schedule for the task graph with adjusted deadlines executed on two
processors. Assume that tasks can migrate between processors freely, i.e. strictly follow a
strategy in which at any point in time the two tasks with the highest priority are running.

(e) Does any uni-processor, priority-based scheduling of tasks with dependencies ever
require preemption? If so, under what conditions? If not, why not? How about in priority-
based multi-processor scheduling?

(f) EDF-type scheduling algorithms are only optimal in uni-processor systems. In systems
with multiple processors/cores, there is no known optimal, tractable (polynomial
complexity) scheduling strategy. What can be done, however, is to statically partition
tasks onto processors in a fixed, pre-defined manner and then run a regular scheduling
algorithm on each processor. Assuming no precedence constraints and no deadlines other
than the end of the period, how many processors are needed to run the given task set in a
period of 5 time units? Show a possible assignment of tasks to processors.

Problem 2: Task Partitioning (50 points)
In class and the homework we only looked at a simplified version of the Kernighan-Lin
algorithm. The full Kernighan-Lin algorithm looks at complete sequences of node swaps. In each
iteration of the algorithm, a set of possible partition candidates is constructed by consecutively
swapping nodes that have not been swapped before and that result either in the largest gain or
least loss in inter-partition communication cost per swap (i.e. considering intermediate swaps
that may increase cost). The set of candidates is complete when all nodes have been considered
for swapping, i.e. the graph is mirrored. Out of this set of candidate partitions, the algorithm
selects the partition with the least cost, i.e. it actually only executes the partial subsequence of
swaps that leads to the largest overall reduction in cost. This process (of constructing candidates
and selecting the best) is repeated until no more gains can be achieved (there is no candidate that
leads to any reduced cost).

Consider the following task graph with uniform communication costs per edge and initial
partitioning:

C

A

F

B

D

PE1PE0

E

(a) Apply the full Kernighan-Lin algorithm to the task graph. Show the swap sequences,
actually selected partitions and communication costs in each iteration of the algorithm.

(b) Can this algorithm still get stuck in a local minimum? Why or why not?

(c) How could this algorithm be extended to take computation costs and scheduling into
account. Assume that tasks are periodic and that communication costs do not represent
actual tasks dependencies (precedence constraints), but rather generally the fact whether
two tasks ever exchange data or not (required connections).

(d) How could this algorithm be extended to support general n-way partitioning, i.e. more
than two partitions?

	Problem 1: Task Scheduling (50 points)
	Problem 2: Task Partitioning (50 points)

