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* Many projects begin with a working HLL application.

* Particularly common in multimedia and communications
* Goals

* Maintain conformance with original application
software throughout development

* The HLL implementation serves as the reference model.

* Profiling data and architecture considerations drive
process

* Support incremental mapping of modules

* One accelerator at a time...

* SystemC is well suited for use with C/C++ HLL aii)s.
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Standards-Based Applications
* Predominant in some important domains
* Wireless Communications
* Networking
* Audio, Video

* Standards are often developed using a community-
developed HLL application.

* The application embodies the standard.

* Such reference applications are seldom well
structured or optimized.

* Full conformance to standard is crucial to success.
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Steps in Moving from Reference Code to
an Embedded Implementation

* Algorithm study and analysis

* Setting target performance requirements

* Understanding reference code structure

* Profiling, identification of bottlenecks

* \What functions must be accelerated to meet
performance targets?

* Developing a Hardware Abstraction Layer (HAL)
* Modifying code to make it suitable for hardware
* Mapping the application onto the hardware

* Readying the application for production 2
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From Reference Code to
Embedded Implementation

* Conformance maintained at all phases of design

* Reference application used to generate module-
level test vectors

* Hardware/Software co-design a natural by-product

* Hardware abstraction layer (HAL) defines the
interface between application software and any
special-purpose hardware

* Need a development environment supporting
hardware models and application software execution

* SystemC (informal software support)
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Considerations in Selecting Modules for

Realization as Accelerators
Software profile data can help filter candidate modules.

HLL function boundaries not always appropriate module
boundaries

* Some code refactoring may be necessary

Input/output requirements also a factor

* Transfer overhead can swamp advantage of acceleration
Look for opportunities for module-level parallelism

* Identify synchronization requirements
Global variables must be eliminated from module

* Map to arguments

Data transfer alternatives (e.g., DMA, processor-@d)
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The Hardware Abstraction Layer (HAL)

* Provides an efficient interface to hardware while
maintaining application code structure.

* From application, HW accelerator looks like a function call
* From HW accelerator, application looks like HW/buffer

* Define functions for each HW/SW interaction,
isolating hardware detail from application software.

* Provide synchronization primitives required for flow
control, management of parallel activity.

* Enables mixture of hardware and software models

* Selective use of hardware modules supports debug in
emulation environment

* Expanded verification challenge
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Formalizing the HAL Interfaces

* A formal, standardized representation would be helpful.
* Support tool-based interface generation and error-checking
* Ease IP re-use
* Capture constraints
* Bridge the gap between software and hardware constraints

* The Architecture and Analysis and Design Language
(AADL)
* Originally the “Avionics Architecture Description Language”

* Safety-critical and mission-critical applications were initial
focus

* Separates fypes (interfaces) and implementations

* http://www.sei.cmu.edu/pub/documents/06.reports/pdf/06tn011.pdf
By |
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HAL Application Interface Layer

* Application Layer
* Maps HLL function call to lower layer of HAL
void appFunctionl(int * data, int dataSize)

{
#i1T HAL_ENABLED
int i

HAL_checkReadyFunctionl1(TRUE) ;

for (i=0; i < dataSize ; i++)

{
HAL_enqueueToFunctionl(data[i]) ;
}
HAL_startFunctionl() ;
#else

// .. Existing HLL application function code ..

#endif
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HAL Hardware Interface Layer

* Hardware Layer

* Interacts with HW for synchronization, data transfers, and
status queries

int HAL_waitReadyFunctionl(int waitTillReady)

{
int result ;
do {
result = HAL_ADR_FunctionlStatus() ;
} while ('result && waitTillReady) ;
return result ;
3

Sy
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HAL Layers

* Hardware Layer with Instrumentation

* Can be used to capture stimuli

int HAL_enqueueToFunctionl(int data)

{
#if HAL_GEN_VERILOG
fprintf(pfvStim,”’halFunctionlinputData

#endif

= %d ;\n”, data) ;

halFunctionllnputQueue = data ;

University of Texas at Austin
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Example - MPEG-2 Video Decode

Motion

Transform
Vectors

Coefficients

Predicted
Pixels

Error
Coefficients
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Inverse Discrete Cosine Transform

* Fundamental process in most image compression
algorithms

* JPEG, MJPEG, MPEG

* Image data tends to show correlation in frequency
domain.

* Forward discrete cosine transform (DCT) used during
encoding
* Intra (I) frames: coefficients are frequency-domain pixel values

* Prediction (P) frames: coefficients are prediction errors

* Inverse discrete cosine transform (iDCT) used during
decoding to recover image

* Color components processed separately
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Inverse Discrete Cosine Transform

* Processing iDCTs becomes time critical for video
decoding.

* Consider the case of 1080i HD video
* Pixels per frame: 1088" * 1920 = 2,088,960
* Frame rate: 30 frames per second?

* Required two-dimensional 8x8 iDCTs per second:
(2088960 * 30) / (8 * 8) = 244,800 iDCTs/second
for luminance data alone

. . 1 Height padded to 1088 t
* Time budget for each luminance  oomutoe o 16,

iDCT: 4.08 uSecs (2.7 uSecs 2 Actually 60 interlaced

fields per second
with chroma data added) ’
g
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MPEG-2 iDCT Reference Software

#define BLSIZE 8

void dct_two_d(short int **in, short int **coeff)

{

register int j1l, i1, j,offset;

float b[BLSIZE],c[BLSIZE];
float d[BLSI1ZE][BLSIZE];

for(i=offset=0;i<8;i++,0ffset+=8){

Ffor(3J=0;j<8;j++)
b[j] = (float) in[i1[i];

/* Horizontal transform */
for (= 0;j<4;j++){

Jj1 =7-13;
ch]l = b0l + bLill;
cj1] = bj] - bLill;
}
b[0] = c[0] + c[3];
b[1] = c[1] + c[2];
b[2]1 = c[1] - c[2];
b[3] = c[0] - c[3];
b[4] = c[4];
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MPEG-2 iDCT Reference Software (2)

b[5] = (c[6] - c[5]) * fO;
b[6] = (c[6] + c[5]) * fO;

b[7] = cL7];

d[i][0] = (P[O] + b[1]) * f4;
dLi][4] = (P[O] - Db[1]) * f4;
d[i1[2] = b[2] * f6 + b[3] * f2;
d[i][6] = b[3] * f6 - b[2] * f2;
c[4] = b[4] + b[3];

c[71 = b[7] + b[E];

c[51 = b[4] - b[3];

c[6] = b[7] - b[E];

d[i1[1] = c[4] * F7 + c[7] * f1;
d[i1[5] = c[5] * 3 + c[6] * f5;
d[i1[7]1 = c[7] * f7 - c[4] * f1;
d[i1[3] = c[6] * 3 - c[5] * f5;

/* Vertical transform */
for (i=0;i<8;i++){
for (J=0;j<4;j++){

Jj1 =7-13;
chl = dOl1ril] + dpa]Lil:
;U1]= d1Cil - dOlril;
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MPEG-2 iDCT Reference Software (3)

b[0] = c[0] + c[3];
b[1] = c[1] + c[2];
b[2] = c[1] - c[2];
b[3] = c[0] - c[3];
b[4] = c[4];
b[5] = (c[6] - c[5]) * fO;
b[e] = (c[6] + c[5]) * fO;
b[71 = c[7]:
dio1[i] = (b[O] + b[1]) * f4;
di41[i] = (b[O] - b[1]) * f4;
d[21[i] = b[2] * f6 + b[3] * f2;
d[61[i] = b[3] * f6 - b[2] * F2;
c[41 = b[4] + b[5];
c[7v1 = b[7] + b[6];
c[51 = b[4] - b[5];
cl61 = b[7] - b[6];
d[11[i] = c[4] * f7 + c[7] * f1;
d[5]1[i] = c[5] * 3 + c[6] * f5;:
d[71[i] = c[7] * 7 - c[4] * f1;
d[3][i] = c[6] * 3 - c[5] * f5:
3
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MPEG-2 iDCT Reference Software (4)

// Do rounding instead of just truncating.
// Decided in 38.MPEG-meeting in Sevilla

// Note: rounding is for accurate reference
// IT for speed encoding, you may go without this.
// There is no discernible effect in image quality.

for (i=0;i<8;i++){
for (§=0;j<8;j+{
iIfLi1g] >=0) {
coeff[i][j] = (short int)(d[il[j] +
0.499999999999) ;

}
else {
coeff[i][j] = (short int)(d[il] -
0.499999999999) ;
}

// clipping range
if(coeff[i1[J] < -2048) coeff[i][ij]l
if(coeff[il[J] > 2047) coeff[i][ij]l

-2048;
2047,

Sy
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Observations on the Reference Code

* Floating point is expensive in hardware
* Highly sequential computation as structured

* Two-dimensional control loop doesn’t take
advantage of observation that the vertical and
horizontal operation sequences are identical

* Opportunity to re-use hardware and/or software
for both directions

* Final rounding operation and clipping pass over data
is time-consuming

* Rounding and clipping pass highly sequential in

general-purpose hardware
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Conversion of Floating Point Arithmetic

Operations to Integer Arithmetic

* Determine dynamic range of floating point calculations,
including all intermediate values

* Analytical approach superior when possible

* Random and directed test vectors with range accumulation
on each variable where direct analysis is not practical

* Ifrange is too large

* Consider pre-scaling data to narrower range.

* Must determine if error introduced is acceptable
* Re-scale the results at end of computation

* Restructure/reorder arithmetic operations to reduce dynamic

range for intermediate calculations.
oy
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Modifying the iDCT Code for Hardware

* Integer-only computation needed

* Mapping the reference code directly into an integer
representation

* Dynamic range of data within 32-bit integer
capacity

* Only barely

* Can the algorithm be modified to reduce the
dynamic range required?

* Can 16-bit intermediate values suffice?

* What loss of accuracy will occur?
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MPEG-2 Integer iDCT Software

#define W1 2841 /* 2048*sqrt(2)*cos(1l*pi/l6) */
#define W2 2676 /* 2048*sqrt(2)*cos(2*pi/l1l6) */
#define W3 2408 /* 2048*sqrt(2)*cos(3*pi/l6) */
#define W5 1609 /* 2048*sqrt(2)*cos(b*pi/l6) */
#define W6 1108 /* 2048*sqrt(2)*cos(6*pi/l6) */
#define W7 565 /* 2048*sqrt(2)*cos(7*pi/l6) */

/* row (horizontal) IDCT

7 pi 1
* dst[k] = sum c[1] * src[l] * cos( -- * (k+-) *1)
* 1=0 8 2
* where: c[0] = 128
* c[1..7] = 128*sqrt(2)
*/
static void idctrow(short *blk)
{

int x0, x1, x2, x3, x4, x5, x6, X7, X8;

if (1((x1 = bIk[4]<<11) | (x2 = bIK[6]) | (x3 = bIK[2]) |
(x4 = bIK[ID | (x5 = bIK[7D) | (x6 = bIK[S]) | (x7 = bIK[3])))

bIk[0]=blk[1]=blk[2]=bIK[3]=bI1Kk[4]=bIK[5]=bIK[6]=bIKk[7]=bIk[0]<<3;
return;

} _Yi
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/*
X8
X4
x5
X8
X6
X7

/*
X8
X0
x1
X2
X3
x1
X4
X6
x5

MPEG-2 Integer iDCT Software (2)

x0 = (blk[0]<<11l) + 128; /* for proper rounding in the fourth stage */

first stage */
W7*(x4+x5);

x8 + (W1-W7)*x4;
X8 - (W1+W7)*x5;
W3*(X6+x7);

x8 - (W3-W5)*x6;
x8 - (W3+W5)*x7;

second stage */

= x0 + x1;

= x1;

W6*(x3+x2);

x1 - (W2+W6)*x2;
x1 + (W2-W6)*x3;
X4 + X6;

= X6;

X5 + X7;

—_= X7;
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MPEG-2 Integer iDCT Software (3)

/* third stage */
X7 = X8 + X3;
X8 -= x3;
x3 = X0 + x2;
X0 -= Xx2;
x2 = (181*(x4+x5)+128)>>8;
x4 = (181*(x4-x5)+128)>>8;
/* fourth stage */
bIK[0] = (X7+x1)>>8;
bIk[1] = (X3+x2)>>8;
bIk[2] = (X0+x4)>>8;
bIK[3] = (x8+x6)>>8;
blk[4] = (x8-x6)>>8;
bIK[5] = (xX0-x4)>>8;
bIKk[6] = (X3-x2)>>8;
bIK[7] = (X7-x1)>>8;

b
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MPEG-2 Integer iDCT Software (4)

/* column (vertical) IDCT
* 7 pi 1
* dst[8*k] = sum c[I] * src[8*I] * cos( -- * (k+-) * 1)
* 1=0 8 2

*

* where: c[O0] = 171024

* c[1..7] = (1/71024)*sqrt(2)
*/

static void idctcol(short *blk)

{

int x0, x1, x2, x3, x4, x5, x6, X7, X8;

/* shortcut */

if (A((x1 = (bIKk[8*4]<<8)) | (X2 = blIk[8*6]) | (X3 = blk[8*2]) |
(x4 bIk[8*1]) | (x5 = bIK[8*7]) | (x6 = bIK[8*5]) |
x7 b1k[8*3])))

b1k[8*0]=bIk[8*1]=bIk[8*2]=bIK[8*3]=
bIk[8*4]=bIk[8*5]=bIK[8*6]=bIK[8*7]=
gVideoData->iclp[(bIk[8*0]+32)>>6];
return;

¥

x0 = (bIK[8*0]<<8) + 8192;
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MPEG-2 Integer iDCT Software (5)

/* first stage */

X8 = W7*(x4+x5) + 4;
x4 = (X8+(W1-W7)*x4)>>3;
x5 = (X8-(W1+W7)*x5)>>3;
X8 = W3*(x6+x7) + 4;
X6 = (X8-(W3-W5)*x6)>>3;
X7 = (X8-(W3+W5)*x7)>>3;

/* second stage */
x8 = x0 + x1;
X0 -= x1;

X1 = W6*(x3+x2) + 4;

x2 = (X1-(W2+W6)*x2)>>3;
X3 = (X1+(W2-W6)*x3)>>3;
X1 = x4 + X6;

X4 -= X6;

X6 = x5 + X7;

X5 -= X7;

Sy
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MPEG-2 Integer iDCT Software (6)

/* third stage */
X7 = X8 + X3;

X8 -= X3;

X3 = x0 + Xx2;

X0 -= Xx2;

x2 = (181*(x4+x5)+128)>>8;

x4

(181* (x4-x5)+128)>>8;

/* fourth stage */

bIk[8*0] = gVideoData->iclp[(x7+x1)>>14];
bIk[8*1] = gVideoData->iclp[(x3+x2)>>14];
blk[8*2] = gVideoData->iclp[(x0+x4)>>14];
blk[8*3] = gVideoData->iclp[(x8+x6)>>14];
blk[8*4] = gVideoData->iclp[(x8-x6)>>14];
bIk[8*5] = gVideoData->iclp[(x0-x4)>>14];
blk[8*6] = gVideoData->iclp[(x3-x2)>>14];
bIk[8*7] = gVideoData->iclp[(x7-x1)>>14];

by
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MPEG-2 Integer iDCT Software (7)

/* two dimensional

{

short *block = *inblock;

int i;

for (i=0;

i<8; i++)

idctrow(block+8*i);

for (i=0;

i<8; i++)

idctcol (block+i);
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inverse discrete cosine transform */
void Fast_IDCT(short **inblock, short** outblock)

Sy
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Comments on the Integer iDCT Variant

* Only slight loss of accuracy (>40 dB pSNR for iDCT)

* Anything > ~30 dB pSNR is usually deemed okay
for video

Use of 16-bit integers allows efficient mapping to
MMX instructions for faster execution on a general-
purpose machine.

Shifts are efficiently implemented in hardware.

Opportunity for early cut-off in software

Note similarity of horizontal and vertical processing
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Options for Accelerating the iDCT

* Simplest: use existing MMX instructions on PC

* Highest performance: map into 256-input, 256-
output maximally parallel logic

* Fast, but very large

* No flexibility

Sy
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Options for Accelerating the iDCT

* High performance: translate the simple C to Verilog,
synthesize one-dimensional vector iDCT, replicate
the module 8 times for each dimension

* Simpler than maximally parallel concept

* Still no flexibility

N O© N o
N O© N o

Row Col
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Options for Accelerating the iDCT
* High performance but smaller: reuse one-
dimensional slices for row and column
* “Transpose memory” serves as buffer

* Still no flexibility

~ o N o

. s

Sy
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Options for Accelerating the iDCT

* High performance with increased flexibility:
microcode engine with SIMD

* “Transpose memory” serves as buffer

* Works on 8x8 (or smaller) blocks for iDCT, DCT,
forward and inverse integer transform (H.264)

]
]
.

el
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Integer iDCT for Microcode Engine

static void idct_x2(int i0,

int i4,
int jo,
int j4,

int
int
int
int

*
*
*
*

int ro, rl1, r2,

ro =il * C7 ;

ri =17 *Cl ;

r2 =1i5 * C3 ;

r3 =13 * C5

ro = (ro - rl) >> (isRow ? O :

/* 5 */

ri =17 * C7 ;
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00,
o4,
po,
p4,

r3,

int
int
int
int

r4,

int i5,
int ji,
int j5,

*
*
*
*

int il, int i2, int i3, /* input values */

int i6, int i7,
int j2, int j3,
int j6, int j7,
char isRow, /* non-zero if row */

ol,
05,
p1,
PS5,

, 16,

int * 02, int * 03, /* outputs */
int * 06, int * o7,
int * p2, int * p3,
int * p6, int * p7)
r7 ;
8) ; /*e*/

Sy
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/* 6
r3
r2
/* 7
r7
/* 8
r3
ri
/* 9
r4
ro
r2
/* 1
r5
r3
/* 1
r7
ri
r3
/* 1
ré
r4
ri

Integer iDCT for Microcode Engine (2)

*/
=il * C1 ;
=(r2 - r3) > (isRow ?2 0 = 8) ; /* T */
*/
= i3 * C3 ;
*/
= i5 * C5 ;
= (rl +r3) >> (isRow ?2 0 = 8) ; /* h */
*/
= i6 * C6 ;
=r0 + r2 ; /* b[4] */
= (0 - r2) >> 3 ;/* bl[5] */
0 */
= i2 * C2 ;
= (r7 + r3) >> (isRow ? 0 = 8) ; /* g */
1*/
= i6 * C2 ;
=(rl - r3) > 3 ; /* bl[6] */
=rl + r3 ; /> b[7]
2 */
i2 * C6 ;

rl - r2 ;
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(r4 + r5) >> (isRow ? O :

8) ; /* bi[3] */
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/* 1
ré
r7
/* 1
r7
r2
r5
/* 1
r5
r7
rd
/* 1
ri
r5
ré
/* 1
r2

Integer iDCT for Microcode Engine (3)

3 */

= (r6 - r7) >> (isRow ? O :
=10 + i4 ;

4 */

= (r7 * C4) >> (isRow ? O :
=rl +r2;

=10 - 14 ;

5*/

= (r5 * C4) >> (isRow ? O :
=r7 +r4 ;

=r7 -r4 ;

6 */

= (rl * C0) >> 8 ;

=r5 + r6 ;

=r5 -1r6 ;

7 */

= (r2 * C0) >> 8 ;
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8) ; /* bl[2] */

8) ; /* bl[0] */

8) ; /* bi[l] */
/* b[o]
/* b[3]

/* b[5] */
/* b[1]
/* b[2]

/* b[6] */
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*/
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Integer iDCT for Microcode Engine (4)

/* 18 */

ro = ji1 * C7 ;

a0 = (r4 + r0) ;

*03 = (int) (a0 + (isRow ? O : /* d[3] */

((a0 > 0) ? 1023 : 1024))) >> (isRow ? 3 : 11);
if (lisRow)

{
if (*o3 > 255)
*03 = 255 ;
else if (*o3 < -255)
*03 = -255 ;
ks
al = (r4 - r0) ;
*04 = (int) (al + (isRow ? O : /* d[4] */

((al > 0) ? 1023 : 1024))) >> (isRow ? 3 : 11);
if (lisRow)

{
if (o4 > 255)
*04 = 255 ;
else if (*o4 < -255)
*04 = -255 ;
b
a N
EE382V — System-on-Chip Design — Application Mapping SPS-37 University of Texas at Austin

Mapping the Hardware Functions
to SystemC Models
* HAL separates application software from SystemC

“collars” (application-layer HAL) on functions to be
implemented in hardware

* Initially, SystemC model is nothing more than
functional HLL code with ports.

* Follow-on with successive refinements to model
reflecting hardware structural decomposition.

* Useful for simulation-based debugging of microcode
engines

* Alternatively, refine model to synthesizable form

* All models verified against reference software By
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SystemC HAL Interface for Integer iDCT

#include "systemc.h*

SC_MODULE(idct)

{
sc_in_clk ck ;
sc_in<sc_bv<32>>
sc_in<sc_bv<8>>
sc_in<sc_bit>

indata ;
addr ;

wr, sel, go ;

// declare iDCT sc_module

// input signal ports

sc_out<sc_bv<32>> outdata ;

unsigned int tm[BLSIZE][BLSIZE] ; // transpose memory

// Interface to the bus
it (sel)
{

it (wr)
{
tm[addr>>4][addr&0OxF] = indata ;

}
else if (1go)
{
outdata = tm[addr>>4][addr&0OxF] ;

¥
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SystemC HAL Interface for Integer iDCT (2)

else
{
int i ;
for (i=0; i1 < 8 ; i++)
// Call behavioral function for rows

idct x2(tm[i1[0]. tm[i1[1], tm[i1[2]. tm[il[3].
tm[i][4], wm[i][5], tm[i][6], tm[i][7],
1

&im[O][i], &tm[1][i], &em[2][i], &tm[3][i],
&tm[4][i], &em[51[i], &tm[6][i], &em[71[i]) ;
3
for (i=0; i1 < 8 ; i++)
// Call behavioral function for columns
idct x2(tm[O][i], tm[1][i], tm[2][i], tm[3][i],
tm[4]1[i], tm[5][i], tm[6][i], tm[71[i],
0

stn[i1[0], &n[i1[1], &m[i]1[2]. &n[i][3],
&tm[i][4]. &m[il[5]. &tm[i][6]1. &m[i]1[71) :
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Things to Consider

* Application profiling with SystemC models presents
a challenge.

* “Back out” profile data and overhead for
hardware models

* Determine cycle counts of the hardware models

* Build spreadsheet to compute adjusted profile
results with clock cycle as parameter

* An instrumented HAL can be useful in assessing
system performance.

* Track bus activity, memory reference patterns,
bandwidth requirements.
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Conclusions

* For target applications based on reference software,
or for any project that begins with “gold” application
software, SystemC can provide a smooth path from
software to embedded system.

* Select candidate models based on profile data or
by known performance requirements (e.g., frame
rates for video decode)

* Convert floating point operations to integer to
reduce HW complexity and processing time

* Consider interface issues
* Polling or interrupt for control events
* DMA or processor-directed transfers
oy
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Conclusions (continued)

* Map functions to hardware by first “collaring” them
with port interfaces around the pure behavior.

* Increase detail and accuracy of SystemC model as
design progresses.

* Use reference application as test bench throughout.

* Use HAL to hide hardware detail from application
and to instrument the model.

* Maintain a working model that matches the gold model
throughout the entire design.
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Motivation
* Why use transaction-level modeling and ESL languages?
* Manage growing system complexity
* Move to higher levels of abstraction

Enable HW/SW co-design

* Speed-up simulation

* Support system-level design and verification

N Increase designer productivity
N Reduce development costs and risk

N Accelerate time-to-market & time-to-money
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Transaction-Level Modeling

* Communication among modules occurs at the
functional level.

* Each transaction is a coherent unit of interaction

* Data structures and object references are passed
instead of bit vectors

* Goals of TLM
* Higher level of abstraction
* More comprehensible high-level system models
* Greater simulation speeds

* Advantages of TLM
* Natural way to think about high-level communications
* Object Independence
* Abstraction Independence S~y
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Transaction-Level Modeling

Transaction- request burst read, size = cache line bytes
Level Memory System
Managemen return cache line
Example Unit Memory
Sequence
RTL assert bus master request Syst
ystem
E M Memory tb Memory &
xample Management] grant bus o
Unit
Sequence drive address, read request control signals Controller
i drive acknowledge of burst read request :
1 1
1 drive first data word onto bus !
) 1
1 1
| i
1 1
! drive last data word onto bus !
| i
! release bus H
I 1
1 1
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Transaction-Level Modeling Conclusions

* In TLM, computation and communication objects are
connected through abstract data types.

* TLM enables modeling each component independently at
differing levels of abstraction.

* A major challenge is to define, obtain, or develop the
necessary and sufficient set of models for the design flow.

* Another major challenge is to define the model algebra
and its corresponding methodology to make the design
flow as efficient as possible (e.g., synthesis).

* In practice, assembling the system model is no small feat
either, especially when models come from different
sources (e.g., third-party IP, embedded processor vendor,

etc.).

* The potential payoff is truly enormous.
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* From Gajski and Cai, UC Irvine
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Basic Requirements of ESL Languages

* Support for Transaction-Level Modeling
* Objects can be modeled independently.

* Objects can be modeled at different levels of abstraction.

Object Independence
* Black-box objects
* Third-party objects (IP)

Abstraction Independence
* Assists in verification of the sequence of refinements

* Flexibility in development methodologies.

Support all models of computation

Enable high-speed simulation
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ESL Language and Environment
Design Trade-Offs

* Object-oriented?
* A natural way to think of system behavior

* Easy to build component and data abstractions

* General-purpose language extensions?

* Easier to support third-party tool, test-bench and model
interfaces, although doing so may require significant
expertise and effort

* Generally more open and flexible

* Precise representation of software modules?

Sy
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More ESL Language and Environment
Design Trade-Offs

* “Platform-based” environment?

* System-level model “stitching” may be greatly simplified
through the use of a single model library...

e ...until that library doesn’t have what you need, and you are
forced to import or develop models or tools.

* Well defined third-party tool and model interfaces?

* Resorting to “pure” C or C++ features is often an unsatisfying
and complex recourse when problems are encountered.

- System model assembly quickly becomes an extremely
challenging task.

* Black-box models often embody their own simulation
semantics

* May require a “simulator of simulators.”
_\'r_
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ESL Languages: SpecC
* Extension of ANSI-C

* Every C program is a SpecC progam

* SpecC type extensions for HW (minimal by design):
- Boolean
- Bit vectors
- Events

* Basic structure consists of behaviors, channels,
interfaces, variables, and ports

* Focus on automated transformations and synthesis
- Arguably somewhat “hardware-centric”

* Not widely adopted by industry or EDA communit
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ESL Languages: System Verilog

* Standards-based successor to Superlog, a language
combining Verilog and C previously developed by
Co-Design Automation (now part of Synopsys)

* Extends Verilog 2001 (IEEE-1364-2001) with complete
interface to C

* Verilog inside “comfort zone” of today’s hardware
designers (where SystemC clearly is not)

* Bluespec has released an ESL Synthesis tool based on
“Bluespec System Verilog.”

* Higher than RTL

* But still obviously (and intentionally) close to the
hardware sfructure and not purely its behavior
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ESL Languages: SystemC

* Class library extension to C++

* Recently extended to support verification-specific
constructs

* C++ can be intimidating to HW designers trained in
Verilog or VHDL

* Software developers find it easier to integrate their
programs and tools than with other ESL languages.

* Open standard effort through the Open SystemC
Initiative (OSCI)

* Synthesis tools emerging in the marketplace

Sy
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SystemC Advantages

* SystemC is well-matched to the development of
application-specific SoC’s that start from a working
base of application software.

* Media processors typify this class of SoC.

* Develop from the application code down to the
hardware.

- Comparatively simple (depending on code
structure) to partition and map software
modules to hardware elements during design-
space exploration

- Verification at each step of the refinement
process uses the original (typically regression)

test-bench.
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AADL: Architecture Analysis and
Design Language
* Adopted as standard by SAE

* Originally developed specifically for mission-critical avionics

* Part of RTCA* DO-254 and DO-178B standards for mission-
critical hardware and software, respectively

* Supports rigorous definition of both software and
hardware models and their interfaces
* Enables automated generation of software builds
* Notation limited to module interfaces + Rl Technical Commission
for Aeronautics

* Distinguished from hardware-centric ESLs

* Software modules not merely an afterthought
>y
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Today’s ESL Languages:
What’s Missing?
(A Few Brief Editorial Comments)

* In practice, an electronic systems-level design
effort encompasses, minimally:

* Hardware elements, including general-purpose
processors, other third-party IP, custom processors,
hardware accelerators, memories, analog interfaces,
etc.

* Software elements, including microcode, hardware
abstraction layer (HAL) interface code, operating
systems (typically an RTOS), application code, etc.

* Hardware test benches and related tools, scripts, etc.
* Software test benches and related tools, scripts, etc.
T |
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Today’s ESL Languages:
What’s Missing?
* Elements of practical ESL design efforts, continued:
* Debugging tools for HW and SW
* Compilers, assemblers, linkers, etc.

* Sensors of various types, and models for them

* Current ESL languages tend to give short shrift to
everything but the hardware elements.

* Third-party hardware IP issues are often overlooked as
well

* “Growing up the abstraction ladder from RTL”
* Total development effort and cost for software often
substantially exceeds that required for hardware.
Sy
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Today’s ESL Languages:
What’s Missing?

* In effect, current ESL language development has been
driven simply by the laudable but narrow goal of
improving the productivity of hardware designers.

* The inescapable conflict between Moore’s Law and Brook’s
Law (The Mythical Man-Month)

* Improved hardware design productivity is an important
goal, to be sure, but...

* ... targeting a reduction in the overall system development
cost, time, risk, etc., is ultimately the only meaningful goal.

- At the end of the day, SoC'’s are still, unavoidably, a business
venture, and success depends upon all elements of trh

development process (among a great many factors).
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Today’s ESL Languages:
What’s Missing?

* In practice, constructing and maintaining system
models can take many months of effort.

* The presence of heterogeneous multiprocessor SoC'’s,
often with their own software development tools and
debuggers, further exacerbates the problem.

- Coordinating the execution of all the tools and models is
non-trivial, to put it mildly.

- For example, how do you get two different debuggers to
cooperate during multiprocessor debugging?

* Third-party IP models may encapsulate their own
simulation semantics.

- Thereby requiring a simulator to coordinate the
simulators...

- Merging cycle-based models with event-driven, etc.

Sy
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Conclusions

Transaction-Level Modeling is key to exploiting ESL
languages and design methodologies.

Electronic System-Level languages enable the use of
higher levels of abstraction in hardware modeling.

* Improved hardware design productivity
* HW/SW co-design

* Transformation and refinement of models through synthesis
is emerging.

Developing operational ESL models of systems
remains a very challenging task.

* We’re now only looking at the tip of the iceberg.

ESL design methodologies must address the entire
design flow, not just the hardware.
’ ’
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