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Overview
• Many projects begin with a working HLL application.

• Particularly common in multimedia and communications

• Goals
• Maintain conformance with original application

software throughout development
• The HLL implementation serves as the gold reference model.

• Profiling data and architecture considerations drive
process

• Support incremental mapping of modules
• One accelerator at a time…

• SystemC is well suited for use with C/C++ HLL apps.



9/29/2014

2

EE382V – System-on-Chip Design – Application Mapping SPS-3 University of Texas at Austin

Standards-Based Applications
• Predominant in some important domains

• Wireless Communications

• Networking

• Audio, Video

• Standards are often developed using a community-
developed HLL application.

• The application embodies the standard.

• Such reference applications are seldom well 
structured or optimized.

• Full conformance to standard is crucial to success.
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Steps in Moving from Reference Code to 
an Embedded Implementation

• Algorithm study and analysis
• Setting target performance requirements
• Understanding reference code structure
• Profiling, identification of bottlenecks

• What functions must be accelerated to meet 
performance targets?

• Developing a Hardware Abstraction Layer (HAL)
• Modifying code to make it suitable for hardware
• Mapping the application onto the hardware
• Readying the application for production
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From Reference Code to 
Embedded Implementation

• Conformance maintained at all phases of design

• Reference application used to generate module-
level test vectors

• Hardware/Software co-design a natural by-product

• Hardware abstraction layer (HAL) defines the 
interface between application software and any 
special-purpose hardware

• Need a development environment supporting 
hardware models and application software execution

• SystemC (informal software support)
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Considerations in Selecting Modules for 
Realization as Accelerators

• Software profile data can help filter candidate modules.
• HLL function boundaries not always appropriate module 

boundaries
• Some code refactoring may be necessary

• Input/output requirements also a factor
• Transfer overhead can swamp advantage of acceleration

• Look for opportunities for module-level parallelism
• Identify synchronization requirements

• Global variables must be eliminated from module
• Map to arguments

• Data transfer alternatives (e.g., DMA, processor-directed)
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The Hardware Abstraction Layer (HAL)
• Provides an efficient interface to hardware while 

maintaining application code structure.
• From application, HW accelerator looks like a function call

• From HW accelerator, application looks like HW/buffer

• Define functions for each HW/SW interaction, 
isolating hardware detail from application software.

• Provide synchronization primitives required for flow 
control, management of parallel activity.

• Enables mixture of hardware and software models
• Selective use of hardware modules supports debug in 

emulation environment

• Expanded verification challenge
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Formalizing the HAL Interfaces
• A formal, standardized representation would be helpful.

• Support tool-based interface generation and error-checking

• Ease IP re-use

• Capture constraints

• Bridge the gap between software and hardware constraints

• The Architecture and Analysis and Design Language 
(AADL) 
• Originally the “Avionics Architecture Description Language”

• Safety-critical and mission-critical applications were initial 
focus

• Separates types (interfaces) and implementations
• http://www.sei.cmu.edu/pub/documents/06.reports/pdf/06tn011.pdf
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HAL Application Interface Layer
• Application Layer

• Maps HLL function call to lower layer of HAL
void appFunction1(int * data, int dataSize)
{
#if HAL_ENABLED

int i ;

HAL_checkReadyFunction1(TRUE) ;

for (i=0; i < dataSize ; i++)
{

HAL_enqueueToFunction1(data[i]) ;
}

HAL_startFunction1() ;
#else

//  … Existing HLL application function code …

#endif

}
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HAL Hardware Interface Layer
• Hardware Layer

• Interacts with HW for synchronization, data transfers, and 
status queries

int HAL_waitReadyFunction1(int waitTillReady)
{

int result ;
do {

result = HAL_ADR_Function1Status() ;
} while (!result && waitTillReady) ;
return result ;

}
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HAL Layers
• Hardware Layer with Instrumentation

• Can be used to capture stimuli

int HAL_enqueueToFunction1(int data)
{
#if HAL_GEN_VERILOG

fprintf(pfVStim,”halFunction1InputData = %d ;\n”, data) ;
#endif

halFunction1InputQueue = data ;
}
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Example - MPEG-2 Video Decode
Audio/Video
Demultiplex

Video 
Bitstream
Decode

Inverse
Discrete

Cosine Transform

Inverse
Motion

Prediction

Smoothing
Filter

Audio
Decode

+Error 
Coefficients

Predicted 
Pixels

Transform 
Coefficients

Motion
Vectors

Frame
Store
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Inverse Discrete Cosine Transform
• Fundamental process in most image compression 

algorithms
• JPEG, MJPEG, MPEG

• Image data tends to show correlation in frequency 
domain.

• Forward discrete cosine transform (DCT) used during 
encoding
• Intra (I) frames: coefficients are frequency-domain pixel values
• Prediction (P) frames:  coefficients are prediction errors

• Inverse discrete cosine transform (iDCT) used during 
decoding to recover image

• Color components processed separately
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Inverse Discrete Cosine Transform

• Processing iDCTs becomes time critical for video 
decoding.

• Consider the case of 1080i HD video

• Pixels per frame: 10881 * 1920 = 2,088,960

• Frame rate:  30 frames per second2

• Required two-dimensional 8x8 iDCTs per second:
(2088960 * 30) / (8 * 8) = 244,800 iDCTs/second 
for luminance data alone

• Time budget for each luminance
iDCT:  4.08 uSecs (2.7 uSecs
with chroma data added)

1 Height padded to 1088 to
be multiple of 16.

2 Actually 60 interlaced
fields per second 
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MPEG-2 iDCT Reference Software
#define BLSIZE 8
void dct_two_d(short int  **in, short int **coeff)
{

register int j1, i, j,offset;
float    b[BLSIZE],c[BLSIZE];
float    d[BLSIZE][BLSIZE];

for(i=offset=0;i<8;i++,offset+=8){
for(j=0;j<8;j++)

b[j] = (float) in[i][j];

/* Horizontal transform */
for (j= 0;j<4;j++){

j1    = 7 - j;
c[j]  = b[j] + b[j1];
c[j1] = b[j] - b[j1];

}

b[0] = c[0] + c[3];
b[1] = c[1] + c[2];
b[2] = c[1] - c[2];
b[3] = c[0] - c[3];
b[4] = c[4];
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MPEG-2 iDCT Reference Software (2)
b[5] = (c[6] - c[5]) * f0;
b[6] = (c[6] + c[5]) * f0;
b[7] = c[7];
d[i][0] = (b[0] + b[1]) * f4;
d[i][4] = (b[0] - b[1]) * f4;
d[i][2] = b[2] * f6 + b[3] * f2;
d[i][6] = b[3] * f6 - b[2] * f2;
c[4] = b[4] + b[5];
c[7] = b[7] + b[6];
c[5] = b[4] - b[5];
c[6] = b[7] - b[6];
d[i][1] = c[4] * f7 + c[7] * f1;
d[i][5] = c[5] * f3 + c[6] * f5;
d[i][7] = c[7] * f7 - c[4] * f1;
d[i][3] = c[6] * f3 - c[5] * f5;

}

/* Vertical transform */
for (i=0;i<8;i++){

for (j=0;j<4;j++){
j1    = 7 - j;
c[j]  = d[j][i] + d[j1][i];
c[j1] = d[j][i] - d[j1][i];
}
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MPEG-2 iDCT Reference Software (3)
b[0] = c[0] + c[3];
b[1] = c[1] + c[2];
b[2] = c[1] - c[2];
b[3] = c[0] - c[3];
b[4] = c[4];
b[5] = (c[6] - c[5]) * f0;
b[6] = (c[6] + c[5]) * f0;
b[7] = c[7];

d[0][i] = (b[0] + b[1]) * f4;
d[4][i] = (b[0] - b[1]) * f4;
d[2][i] = b[2] * f6 + b[3] * f2;
d[6][i] = b[3] * f6 - b[2] * f2;

c[4] = b[4] + b[5];
c[7] = b[7] + b[6];
c[5] = b[4] - b[5];
c[6] = b[7] - b[6];
d[1][i] = c[4] * f7 + c[7] * f1;
d[5][i] = c[5] * f3 + c[6] * f5;
d[7][i] = c[7] * f7 - c[4] * f1;
d[3][i] = c[6] * f3 - c[5] * f5;

}
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MPEG-2 iDCT Reference Software (4)
//  Do rounding instead of just truncating.
//  Decided in 38.MPEG-meeting in Sevilla
//    Note: rounding is for accurate reference
//          If for speed encoding, you may go without this.
//          There is no discernible effect in image quality.
for (i=0;i<8;i++){

for (j=0;j<8;j++){
if(d[i][j] >=0) {

coeff[i][j] = (short int)(d[i][j] +
0.499999999999);

}
else {

coeff[i][j] = (short int)(d[i][j] –
0.499999999999);

}

// clipping range
if(coeff[i][j] < -2048) coeff[i][j] = -2048;
if(coeff[i][j] >  2047) coeff[i][j] =  2047;

}
}
}
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Observations on the Reference Code

• Floating point is expensive in hardware

• Highly sequential computation as structured

• Two-dimensional control loop doesn’t take 
advantage of observation that the vertical and 
horizontal operation sequences are identical

• Opportunity to re-use hardware and/or software 
for both directions

• Final rounding operation and clipping pass over data 
is time-consuming

• Rounding and clipping pass highly sequential in 
general-purpose hardware
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Conversion of Floating Point Arithmetic 
Operations to Integer Arithmetic

• Determine dynamic range of floating point calculations, 
including all intermediate values
• Analytical approach superior when possible

• Random and directed test vectors with range accumulation
on each variable where direct analysis is not practical

• If range is too large
• Consider pre-scaling data to narrower range. 

• Must determine if error introduced is acceptable

• Re-scale the results at end of computation

• Restructure/reorder arithmetic operations to reduce dynamic 
range for intermediate calculations.
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Modifying the iDCT Code for Hardware

• Integer-only computation needed

• Mapping the reference code directly into an integer 
representation

• Dynamic range of data within 32-bit integer 
capacity

• Only barely

• Can the algorithm be modified to reduce the 
dynamic range required?

• Can 16-bit intermediate values suffice?

• What loss of accuracy will occur?
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MPEG-2 Integer iDCT Software
#define W1 2841 /* 2048*sqrt(2)*cos(1*pi/16) */
#define W2 2676 /* 2048*sqrt(2)*cos(2*pi/16) */
#define W3 2408 /* 2048*sqrt(2)*cos(3*pi/16) */
#define W5 1609 /* 2048*sqrt(2)*cos(5*pi/16) */
#define W6 1108 /* 2048*sqrt(2)*cos(6*pi/16) */
#define W7 565  /* 2048*sqrt(2)*cos(7*pi/16) */

/* row (horizontal) IDCT
*           7                       pi         1
* dst[k] = sum c[l] * src[l] * cos( -- * ( k + - ) * l )
*          l=0                      8          2
* where: c[0]    = 128
*        c[1..7] = 128*sqrt(2)
*/

static void idctrow(short *blk)
{

int x0, x1, x2, x3, x4, x5, x6, x7, x8;

if (!((x1 = blk[4]<<11) | (x2 = blk[6]) | (x3 = blk[2]) |
(x4 = blk[1]) | (x5 = blk[7]) | (x6 = blk[5]) | (x7 = blk[3])))

{
blk[0]=blk[1]=blk[2]=blk[3]=blk[4]=blk[5]=blk[6]=blk[7]=blk[0]<<3;
return;

}
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x0 = (blk[0]<<11) + 128; /* for proper rounding in the fourth stage */

/* first stage */
x8 = W7*(x4+x5);
x4 = x8 + (W1-W7)*x4;
x5 = x8 - (W1+W7)*x5;
x8 = W3*(x6+x7);
x6 = x8 - (W3-W5)*x6;
x7 = x8 - (W3+W5)*x7;

/* second stage */
x8 = x0 + x1;
x0 -= x1;
x1 = W6*(x3+x2);
x2 = x1 - (W2+W6)*x2;
x3 = x1 + (W2-W6)*x3;
x1 = x4 + x6;
x4 -= x6;
x6 = x5 + x7;
x5 -= x7;

MPEG-2 Integer iDCT Software (2)
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/* third stage */
x7 = x8 + x3;
x8 -= x3;
x3 = x0 + x2;
x0 -= x2;
x2 = (181*(x4+x5)+128)>>8;
x4 = (181*(x4-x5)+128)>>8;

/* fourth stage */
blk[0] = (x7+x1)>>8;
blk[1] = (x3+x2)>>8;
blk[2] = (x0+x4)>>8;
blk[3] = (x8+x6)>>8;
blk[4] = (x8-x6)>>8;
blk[5] = (x0-x4)>>8;
blk[6] = (x3-x2)>>8;
blk[7] = (x7-x1)>>8;

}

MPEG-2 Integer iDCT Software (3)
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/* column (vertical) IDCT
*             7                         pi         1
* dst[8*k] = sum c[l] * src[8*l] * cos( -- * ( k + - ) * l )
*            l=0                        8          2
*
* where: c[0]    = 1/1024
*        c[1..7] = (1/1024)*sqrt(2)
*/

static void idctcol(short *blk)
{

int x0, x1, x2, x3, x4, x5, x6, x7, x8;
/* shortcut */
if (!((x1 = (blk[8*4]<<8)) | (x2 = blk[8*6]) | (x3 = blk[8*2]) |

(x4 = blk[8*1]) | (x5 = blk[8*7]) | (x6 = blk[8*5]) | 
(x7 = blk[8*3])))

{
blk[8*0]=blk[8*1]=blk[8*2]=blk[8*3]=

blk[8*4]=blk[8*5]=blk[8*6]=blk[8*7]=
gVideoData->iclp[(blk[8*0]+32)>>6];

return;
}

x0 = (blk[8*0]<<8) + 8192;

MPEG-2 Integer iDCT Software (4)
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/* first stage */
x8 = W7*(x4+x5) + 4;
x4 = (x8+(W1-W7)*x4)>>3;
x5 = (x8-(W1+W7)*x5)>>3;
x8 = W3*(x6+x7) + 4;
x6 = (x8-(W3-W5)*x6)>>3;
x7 = (x8-(W3+W5)*x7)>>3;

/* second stage */
x8 = x0 + x1;
x0 -= x1;
x1 = W6*(x3+x2) + 4;
x2 = (x1-(W2+W6)*x2)>>3;
x3 = (x1+(W2-W6)*x3)>>3;
x1 = x4 + x6;
x4 -= x6;
x6 = x5 + x7;
x5 -= x7;

MPEG-2 Integer iDCT Software (5)
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/* third stage */
x7 = x8 + x3;
x8 -= x3;
x3 = x0 + x2;
x0 -= x2;
x2 = (181*(x4+x5)+128)>>8;
x4 = (181*(x4-x5)+128)>>8;

/* fourth stage */
blk[8*0] = gVideoData->iclp[(x7+x1)>>14];
blk[8*1] = gVideoData->iclp[(x3+x2)>>14];
blk[8*2] = gVideoData->iclp[(x0+x4)>>14];
blk[8*3] = gVideoData->iclp[(x8+x6)>>14];
blk[8*4] = gVideoData->iclp[(x8-x6)>>14];
blk[8*5] = gVideoData->iclp[(x0-x4)>>14];
blk[8*6] = gVideoData->iclp[(x3-x2)>>14];
blk[8*7] = gVideoData->iclp[(x7-x1)>>14];

}

MPEG-2 Integer iDCT Software (6)
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/* two dimensional inverse discrete cosine transform */
void Fast_IDCT(short **inblock, short** outblock)
{

short *block =  *inblock;

int i;

for (i=0; i<8; i++)
idctrow(block+8*i);

for (i=0; i<8; i++)
idctcol(block+i);

}

MPEG-2 Integer iDCT Software (7)
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Comments on the Integer iDCT Variant

• Only slight loss of accuracy (>40 dB pSNR for iDCT)

• Anything > ~30 dB pSNR is usually deemed okay 
for video

• Use of 16-bit integers allows efficient mapping to 
MMX instructions for faster execution on a general-
purpose machine.

• Shifts are efficiently implemented in hardware.

• Opportunity for early cut-off in software

• Note similarity of horizontal and vertical processing
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Options for Accelerating the iDCT

• Simplest:  use existing MMX instructions on PC

• Highest performance:  map into 256-input, 256-
output maximally parallel logic

• Fast, but very large

• No flexibility

Maximally
Parallel

0

255

0

255

… …
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Options for Accelerating the iDCT

• High performance:  translate the simple C to Verilog, 
synthesize one-dimensional vector iDCT, replicate 
the module 8 times for each dimension

• Simpler than maximally parallel concept

• Still no flexibility

0
0 …
7

1
0

7

7
0

7

…

0
0 …
7

1
0

7

7
0

7

…

Row Col
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Options for Accelerating the iDCT

• High performance but smaller:  reuse one-
dimensional slices for row and column

• “Transpose memory” serves as buffer

• Still no flexibility

0
0 …
7

1
0

7

7
0

7

…TM
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Options for Accelerating the iDCT

• High performance with increased flexibility:  
microcode engine with SIMD 

• “Transpose memory” serves as buffer

• Works on 8x8 (or smaller) blocks for iDCT, DCT, 
forward and inverse integer transform (H.264)

TM

ALU

…
ALU

ALU

Reg
File

Ctrl uCode
Store
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Integer iDCT for Microcode Engine
static void idct_x2(int i0, int i1, int i2, int i3,   /* input values */

int i4, int i5, int i6, int i7,
int j0, int j1, int j2, int j3,
int j4, int j5, int j6, int j7,
char isRow, /* non-zero if row */
int * o0, int * o1, int * o2, int * o3,  /* outputs */
int * o4, int * o5, int * o6, int * o7,
int * p0, int * p1, int * p2, int * p3,
int * p4, int * p5, int * p6, int * p7)

{
int r0, r1, r2, r3, r4, r5, r6, r7 ;
/* 1 */
r0  = i1 * C7 ;
/* 2 */
r1  = i7 * C1 ;
/* 3 */
r2  = i5 * C3 ;
/* 4 */
r3  = i3 * C5 ;
r0  = (r0 - r1) >> (isRow ? 0 : 8) ; /* e */
/* 5 */
r1  = i7 * C7 ;
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/* 6 */
r3   = i1 * C1 ;
r2  = (r2 - r3) >> (isRow ? 0 : 8) ; /* f */
/* 7 */
r7  = i3 * C3 ;
/* 8 */
r3  = i5 * C5 ;
r1  = (r1 + r3) >> (isRow ? 0 : 8) ; /* h */
/* 9 */
r4  = i6 * C6 ;
r0  = r0 + r2 ;          /* b[4] */
r2  = (r0 - r2) >> 3 ; /* b1[5] */
/* 10 */
r5  = i2 * C2 ;
r3  = (r7 + r3) >> (isRow ? 0 : 8) ; /* g */
/* 11 */
r7  = i6 * C2 ;
r1  = (r1 - r3) >> 3 ; /* b1[6] */
r3  = r1 + r3 ; /* b[7] */
/* 12 */
r6  = i2 * C6 ;
r4  = (r4 + r5) >> (isRow ? 0 : 8) ; /* b1[3] */
r1  = r1 - r2 ;

Integer iDCT for Microcode Engine (2)
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Integer iDCT for Microcode Engine (3)
/* 13 */
r6  = (r6 - r7) >> (isRow ? 0 : 8) ; /* b1[2] */
r7  = i0 + i4 ;
/* 14 */
r7  = (r7 * C4) >> (isRow ? 0 : 8) ; /* b1[0] */
r2  = r1 + r2 ;
r5  = i0 - i4 ;
/* 15 */
r5  = (r5 * C4) >> (isRow ? 0 : 8) ; /* b1[1] */
r7  = r7 + r4 ; /* b[0] */
r4  = r7 - r4 ; /* b[3] */
/* 16 */
r1  = (r1 * C0) >> 8 ; /* b[5] */
r5  = r5 + r6 ; /* b[1] */
r6  = r5 - r6 ; /* b[2] */
/* 17 */
r2  = (r2 * C0) >> 8 ; /* b[6] */
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Integer iDCT for Microcode Engine (4)
/* 18 */
r0  = j1 * C7 ;
a0  = (r4 + r0) ;
*o3 = (int) (a0 + (isRow ? 0 :       /* d[3] */ 

((a0 > 0) ? 1023 : 1024))) >> (isRow ? 3 : 11);
if (!isRow)
{

if (*o3 > 255)
*o3 = 255 ;

else if (*o3 < -255)
*o3 = -255 ;

}
a1  = (r4 - r0) ;
*o4 = (int) (a1 + (isRow ? 0 :      /* d[4] */ 

((a1 > 0) ? 1023 : 1024))) >> (isRow ? 3 : 11);
if (!isRow)
{

if (*o4 > 255)
*o4 = 255 ;

else if (*o4 < -255)
*o4 = -255 ;

}

…
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Mapping the Hardware Functions 
to SystemC Models

• HAL separates application software from SystemC 
“collars” (application-layer HAL) on functions to be 
implemented in hardware

• Initially, SystemC model is nothing more than 
functional HLL code with ports.

• Follow-on with  successive refinements to model 
reflecting hardware structural decomposition.

• Useful for simulation-based debugging of microcode 
engines

• Alternatively, refine model to synthesizable form

• All models verified against reference software
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SystemC HAL Interface for Integer iDCT

#include "systemc.h“
SC_MODULE(idct)                      // declare iDCT sc_module
{

sc_in_clk ck ; 
sc_in<sc_bv<32>>  indata ;         // input signal ports
sc_in<sc_bv<8>>   addr ;
sc_in<sc_bit>     wr, sel, go ;
sc_out<sc_bv<32>> outdata ;

unsigned int tm[BLSIZE][BLSIZE] ;  // transpose memory

// Interface to the bus
if (sel)
{

if (wr)
{

tm[addr>>4][addr&0xF] = indata ;
}
else if (!go)
{

outdata = tm[addr>>4][addr&0xF] ;
}
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SystemC HAL Interface for Integer iDCT (2)
else
{

int i ;
for (i=0; i < 8 ; i++)
{

// Call behavioral function for rows
idct_x2(tm[i][0], tm[i][1], tm[i][2], tm[i][3],

tm[i][4], tm[i][5], tm[i][6], tm[i][7],
1,
&tm[0][i], &tm[1][i], &tm[2][i], &tm[3][i],
&tm[4][i], &tm[5][i], &tm[6][i], &tm[7][i]) ;

}

for (i=0; i < 8 ; i++)
{

// Call behavioral function for columns
idct_x2(tm[0][i], tm[1][i], tm[2][i], tm[3][i],

tm[4][i], tm[5][i], tm[6][i], tm[7][i],
0,
&tm[i][0], &tm[i][1], &tm[i][2], &tm[i][3],
&tm[i][4], &tm[i][5], &tm[i][6], &tm[i][7]) ;

}
}

}
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Things to Consider

• Application profiling with SystemC models presents 
a challenge.

• “Back out” profile data  and overhead for 
hardware models

• Determine cycle counts of the hardware models

• Build spreadsheet to compute adjusted profile 
results with clock cycle as parameter

• An instrumented HAL can be useful in assessing 
system performance.

• Track bus activity, memory reference patterns, 
bandwidth requirements.
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Conclusions
• For target applications based on reference software, 

or for any project that begins with “gold” application 
software, SystemC can provide a smooth path from 
software to embedded system.

• Select candidate models based on profile data or 
by known performance requirements (e.g., frame 
rates for video decode)

• Convert floating point operations to integer to 
reduce HW complexity and processing time

• Consider interface issues
• Polling or interrupt for control events

• DMA or processor-directed transfers
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Conclusions (continued)
• Map functions to hardware by first “collaring” them 

with port interfaces around the pure behavior.

• Increase detail and accuracy of SystemC model as 
design progresses.

• Use reference application as test bench throughout.

• Use HAL to hide hardware detail from application 
and to instrument the model.

• Maintain a working model that matches the gold model 
throughout the entire design.
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Motivation
• Why use transaction-level modeling  and ESL languages?

• Manage growing system complexity

• Move to higher levels of abstraction

• Enable HW/SW co-design

• Speed-up simulation

• Support system-level design and verification

 Increase designer productivity

 Reduce development costs and risk

 Accelerate time-to-market & time-to-money
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Transaction-Level Modeling
• Communication among modules occurs at the

functional level.
• Each transaction is a coherent unit of interaction 
• Data structures and object references are passed  

instead of bit vectors
• Goals of TLM

• Higher level of abstraction
• More comprehensible high-level system models
• Greater simulation speeds

• Advantages of TLM
• Natural way to think about high-level communications 
• Object Independence
• Abstraction Independence
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Transaction-Level Modeling

Memory
Management

Unit

System
Memory

request burst read, size = cache line bytes

return cache line

Memory
Management

Unit

System
Memory &

Bus 
Controllerdrive address, read request control signals

drive acknowledge of burst read request

drive first data word onto bus

assert bus master request

grant bus

drive last data word onto bus

…

release bus

Transaction-
Level

Example
Sequence

RTL
Example

Sequence
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* From Gajski and Cai, UC Irvine

Transaction-Level Modeling Conclusions
• In TLM, computation and communication objects are 

connected through abstract data types.
• TLM enables modeling each component independently at 

differing levels of abstraction.
• A major challenge is to define, obtain, or develop the 

necessary and sufficient set of models for the design flow.
• Another major challenge is to define the model algebra 

and its corresponding methodology to make the design 
flow as efficient as possible (e.g., synthesis).

• In practice, assembling the system model is no small feat 
either, especially when models come from different 
sources (e.g., third-party IP, embedded processor vendor, 
etc.).

• The potential payoff is truly enormous.
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Basic Requirements of ESL Languages
• Support for Transaction-Level Modeling

• Objects can be modeled independently.

• Objects can be modeled at different levels of abstraction.

• Object Independence
• Black-box objects

• Third-party objects (IP)

• Abstraction Independence
• Assists in verification of the sequence of refinements

• Flexibility in development methodologies.

• Support all models of computation
• Enable high-speed simulation
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ESL Language and Environment 
Design Trade-Offs

• Object-oriented?
• A natural way to think of system behavior

• Easy to build component and data abstractions

• General-purpose language extensions? 
• Easier to support third-party tool, test-bench and model 

interfaces, although doing so may require significant 
expertise and effort

• Generally more open and flexible

• Precise representation of software modules?
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More ESL Language and Environment 
Design Trade-Offs

• “Platform-based” environment?
• System-level model “stitching” may be greatly simplified 

through the use of a single model library…
• …until that library doesn’t have what you need, and you are 

forced to import or develop models or tools.
• Well defined third-party tool and model interfaces? 

• Resorting to “pure” C or C++ features is often an unsatisfying 
and complex recourse when problems are encountered.

- System model assembly quickly becomes an extremely
challenging task.

• Black-box models often embody their own simulation 
semantics
• May require a “simulator of simulators.”
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ESL Languages: SpecC
• Extension of ANSI-C

• Every C program is a SpecC progam

• SpecC type extensions for HW (minimal by design):

- Boolean

- Bit vectors

- Events

• Basic structure consists of behaviors, channels, 
interfaces, variables, and ports

• Focus on automated transformations and synthesis

- Arguably somewhat “hardware-centric”

• Not widely adopted by industry or EDA community
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ESL Languages: System Verilog

• Standards-based successor to Superlog, a language 
combining Verilog and C previously developed by 
Co-Design Automation (now part of Synopsys)
• Extends Verilog 2001 (IEEE-1364-2001) with complete 

interface to C

• Verilog inside “comfort zone” of today’s hardware 
designers (where SystemC clearly is not)

• Bluespec has released an ESL Synthesis tool based on 
“Bluespec System Verilog.”

• Higher than RTL

• But still obviously (and intentionally) close to the 
hardware structure and not purely its behavior
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ESL Languages: SystemC

• Class library extension to C++

• Recently extended to support verification-specific 
constructs

• C++ can be intimidating to HW designers trained in 
Verilog or VHDL

• Software developers find it easier to integrate their 
programs and tools than with other ESL languages.

• Open standard effort through the Open SystemC 
Initiative (OSCI)

• Synthesis tools emerging in the marketplace
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SystemC Advantages

• SystemC is well-matched to the development of 
application-specific SoC’s that start from a working 
base of application software.

• Media processors typify this class of SoC.

• Develop from the application code down to the 
hardware.

- Comparatively simple (depending on code 
structure) to partition and map software 
modules to hardware elements during design-
space exploration

- Verification at each step of the refinement 
process uses the original (typically regression) 
test-bench.
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AADL:  Architecture Analysis and 
Design Language

• Adopted as standard by SAE 
• Originally developed specifically for mission-critical avionics

• Part of RTCA* DO-254 and DO-178B standards for mission-
critical hardware and software, respectively

• Supports rigorous definition of both software and 
hardware models and their interfaces
• Enables automated generation of software builds

• Notation limited to module interfaces

• Distinguished from hardware-centric ESLs

• Software modules not merely an afterthought 

* Radio Technical Commission 
for Aeronautics
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Today’s ESL Languages: 
What’s Missing?

(A Few Brief Editorial Comments)

• In practice, an electronic systems-level design 
effort encompasses, minimally:
• Hardware elements, including general-purpose 

processors, other third-party IP, custom processors, 
hardware accelerators, memories, analog interfaces, 
etc.

• Software elements, including microcode, hardware 
abstraction layer (HAL) interface code, operating 
systems (typically an RTOS), application code, etc.

• Hardware test benches and related tools, scripts, etc.

• Software test benches and related tools, scripts, etc.
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Today’s ESL Languages: 
What’s Missing?

• Elements of practical ESL design efforts, continued:
• Debugging tools for HW and SW
• Compilers, assemblers, linkers, etc.
• Sensors of various types, and models for them

• Current ESL languages tend to give short shrift to 
everything but the hardware elements.
• Third-party hardware IP issues are often overlooked as 

well
• “Growing up the abstraction ladder from RTL”

• Total development effort and cost for software often 
substantially exceeds that required for hardware.



9/29/2014

30

EE382V – System-on-Chip Design – Application Mapping SPS-59 University of Texas at Austin

Today’s ESL Languages: 
What’s Missing?

• In effect, current ESL language development has been 
driven simply by the laudable but narrow goal of 
improving the productivity of hardware designers.
• The inescapable conflict between Moore’s Law and Brook’s 

Law (The Mythical Man-Month)

• Improved hardware design productivity is an important 
goal, to be sure, but…

• … targeting a reduction in the overall system development 
cost, time, risk, etc., is ultimately the only meaningful goal.

- At the end of the day, SoC’s are still, unavoidably, a business 
venture, and success depends upon all elements of the 
development process (among a great many factors).
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Today’s ESL Languages: 
What’s Missing?

• In practice, constructing and maintaining system 
models can take many months of effort.
• The presence of heterogeneous multiprocessor SoC’s, 

often with their own software development tools and 
debuggers, further exacerbates the problem.

- Coordinating the execution of all the tools and models is 
non-trivial, to put it mildly.

- For example, how do you get two different debuggers to 
cooperate during multiprocessor debugging?

• Third-party IP models may encapsulate their own 
simulation semantics.

- Thereby requiring a simulator to coordinate the 
simulators…

- Merging cycle-based models with event-driven, etc.
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Conclusions
• Transaction-Level Modeling is key to exploiting ESL 

languages and design methodologies.
• Electronic System-Level languages enable the use of 

higher levels of abstraction in hardware modeling.
• Improved hardware design productivity 
• HW/SW co-design
• Transformation and refinement of models through synthesis 

is emerging.

• Developing operational ESL models of systems 
remains a very challenging task.
• We’re now only looking at the tip of the iceberg.

• ESL design methodologies must address the entire 
design flow, not just the hardware.


