EE382V

System Desigh Metrics

Mark McDermott

“You cannot control what you cannot measure”

From Controlling Software Projects, Management
Measurement & Estimation
by Tom DeMarco

EE 382V Class Notes Foil #2 The University of Texas at Austin

Agenda

e Design metrics

e Complexity Models

e SW Metrics

e HW Metrics

* Process Flow Metrics

EE 382V Class Notes Foil # 3 The University of Texas at Austin

Motivation for design metrics

e The questions managers always ask:
How risky is this design?

How much will it cost to implement?

Have we tested enough?

Should we reuse or implement from scratch?

What are our defect rates?

How well are we using our computers and tools

EE 382V Class Notes Foil #4 The University of Texas at Austin

What can we do with Metrics?

EE 382V Class Notes Foil #5 The University of Texas at Austin

Manage risk
— Reduce the probability of an issue becoming a problem!

Manage projects, not by the seat of the pants, but with insight into
the performance of the developer
— An objective, quantitative basis for evaluating product quality and analyzing
issues/problems
— A foundation for quantitative control of the program management and
engineering processes.
= Program performance vs. program plans
= Cost and schedule control
= Quality & Configuration Control
= Defect tracking
= Staffing
* Process improvement

“Early” design metrics

EE 382V Class Notes Foil #6 The University of Texas at Austin

Early availability of metrics is a key factor to a successful
management of software and hardware development, since it
allows for:
— Early detection of problems in the artifacts produced in the initial phases of
the lifecycle (specification and design documents) and, therefore, reduction

of the cost of change - late identification and correction of problems are
much more costly than early ones;

— Better hardware/software quality monitoring from the early phases of the
life-cycle;

— Quantitative comparison of techniques and empirical refinement of the
processes to which they are applied;

— More accurate planning of resource allocation, based upon the predicted
error-proneness of the system and its constituent parts.

Definition of Metrics

e Metrics: The collection of activities concerned with measurement in
software and hardware engineering.

e A metric is a measure of some aspect of a program, design, or
algorithm.
— It can be systematically calculated
— It can be used to make inferences about that program, design, or algorithm.

e By systematically calculating values for programs of known
complexity - We can infer the complexity of other programs from
their calculated values.

— For example:
= We know that programs, designs, and algorithms with y value for metric x had
problem z
— High defect rate, poor maintainability, etc.
= |f my program has those metrics
— It will probably have similar problems

EE 382V Class Notes Foil #7 The University of Texas at Austin

Measurement vs. Metric

e Measures vs. Metrics
— Measures are the numbers used to create the metrics
— Metrics are the numbers turned into information

Example
= Measure: A linearly independent path through a module
= Metric: Cyclomatic Complexity = 25
— The total number of linearly independent paths through a module

Example
= Measure: Dollars Budgeted
= Measure: Dollars expended
= Metric: Cost Performance Index (CPI)

EE 382V Class Notes Foil #8 The University of Texas at Austin

Types of Metrics

¢ Direct measurement: involves no other attributes or entities
— Lines of code (LOC)
— Number of transistors

¢ Indirect/derived measurement: combination of multiple other
measurements
— Defect density = number of defects/LOC)

e Predictive measurement: use mathematical models—measure
known values, interpret results (e.g.: predicting implementation
cost)

— Ex: COCOMO for effort prediction

EE 382V Class Notes Foil #9 The University of Texas at Austin

More Examples of Metrics

e Software size: lines of code

e Personnel cost: salary, productivity

e Modularity: function call fan-in and fan-out

e Test adequacy: coverage, detection rate

e Process: defects per KLOC, # of bug reports

¢ Dependability: reliability, availability, MTBF

e Reuse: percent code reused

e Productivity: LOC per day

e Performance: CPU and memory usage, MIPS, FLOPS

EE 382V Class Notes Foil # 10 The University of Texas at Austin

Cost Performance Metric Example

$K

9000

8000

7000

6000

5000

4000

3000

2000

Software Cost

\ Where we are supposed to be

What we have spent to
get to this point

Where we are o :g‘xs
1000 —#- ACWP
0 lu—m
[} (=] o o
Date
EE 382V Class Notes Foil # 11 The University of Texas at Austin

Optimal Project Control Flow

Assess Viable Strategies

Make Commitment

Estimation
& Planning

Support Future

] Manage
Commitments

Commitment

Control
&
Forecasting

History

Repository

Analyze Performance
on Commitment

Post Project Analysis

EE 382V Class Notes Foil # 12

Monitor Status & Re-plan

The University of Texas at Austin

Downside of Metrics

¢ Management loves metrics as they abstract the enormous amounts
data that management needs to make decisions.
e Metrics rarely point at the root cause when measurements don’t
meet expectations. This is caused by:
— Wrong types of measurement.
— Too much abstraction.
— Too detailed.
— Lag time of the indicators - resulting in stale data.

¢ There is a tendency to create centralized organizations to manage
the measurement and develop metrics.
— The focus turns from getting the job done to meeting the numbers.

EE 382V Class Notes Foil # 13 The University of Texas at Austin

Agenda

e Design metrics

Complexity Models
SW Metrics

HW Metrics

Process Flow Metrics

EE 382V Class Notes Foil # 14 The University of Texas at Austin

Complexity Models

¢ In general reliability is inversely related to complexity

e Measures of software complexity

— McCabe Count branches,
— Halstead calls, inputs,

— Function Points outputs etc.

e Measure of hardware complexity
— Ratio of control transistors to datapath transistors
— Ratio of high speed 1/0 signals to slow speed I/0 signals

— Silicon process: gate length, # layers of metal, # Vt's, double patterning
requirements.

EE 382V Class Notes Foil # 15 The University of Texas at Austin

Dimensions of software complexity

Higher technical complexity

- Embedded, real-time, distributed, fault-tolerant

- Custom, unprecedented, architecture reengineering
- High performance

An average software project: [}

-5-10 people) [Defense
- 10-15 month duration Telecom Weapon System

- 3-5 external interfaces Switch (]

- Some unknowns & risks National Air Traffic

k isk ° o | ional Air Traffi
ommercia Control System
Embedded Compiler Y
Automotive o
Software [Large-Scale .
LOWer CASE Tool Organization/Entity ng her
Simulation
management ° management
. . .

complexity Small Scientific complexity
- Small scale Simulation @ - Large scale

- Informal IS Application o o - Contractual

- Single stakeholder Distributed Objects Enterprise IS Defense - Many stake holders
- “Products” (Order Entry) (Family of IS MIS System - “Projects”

[Applications)
IS Application
GUI/RDB
[(Order Entry)
Business
Spreadsheet

Lower technical complexity
- Mostly component-based
- Application reengineering

- Interactive performance
Walker Royce

EE 382V Class Notes Foil # 16 The University of Texas at Austin

Complexity Forces

Functionality
Cost Compatibility

Capacity Fail safe

Availability Fault tolerance
Performance \ Throughput
Technology churn Resilience

“The challenge over the next 20 years will not be speed or cost or
performance; it will be a question of complexity.”

Bill Raduchel, Chief Strategy Officer, Sun Microsystems

EE 382V Class Notes Foil # 17 The University of Texas at Austin

Agenda

e Design metrics

e Complexity Models

e SW Metrics

e HW Metrics

* Process Flow Metrics

EE 382V Class Notes Foil # 18 The University of Texas at Austin

Metrics used for SW Development

¢ Lines of Code (LOC)

* Function Points (FP)

e FFP (Full Function Points)

EE 382V Class Notes Foil # 19 The University of Texas at Austin
Functional o
Software Cost Blocks <« Specification
Estimation

Process o Function
Calibration —> Points

Source Lines of
Code (SLOC)

Language
Conversion

Software
development effort

|
|
Equivalent SLOC :
including reuse _ Software 1

maintenance effort |
|
|

COCOMO Software schedule

F—————————

Software Development
and Testing Cost
Analysis

EE 382V Class Notes Foil # 20 The University of Texas at Austin

10

Computing Functions Points

e Number of user inputs
— Distinct input from user

e Number of user outputs

— Reports, screens, error messages, etc

e Number of user inquiries

— On line input that generates some result

e Number of files
— Logical file (database)

¢ Number of external interfaces
— Data files/connections as interface to other systems

EE 382V Class Notes

Foil # 21

The University of Texas at Austin

Function point and SLOC metrics

e FP and to some extent SLOC based

metrics have been found to be
relatively accurate predictors of
effort and cost

¢ Need a baseline of historical
information to use them properly

e Language dependent

e Productivity factors: People,
problem, process, product, and
resources

EE 382V Class Notes

Foil # 22

FP cannot be reverse engineered
from existing systems easily

Function points can be used as part
of a indirect/derived measurement

Errors per FP

Defects per FP

Cost per FP

Pages of documentation per FP
FP per person month

The University of Texas at Austin

11

FP and Languages

Language LOC/FP
Assembly 320
C 128
COBOL 106
FORTRAN 106
Pascal 90
C++ 64
Ada 53
VB 32
sQL 12

Where does Verilog or VHDL fit in?

EE 382V Class Notes Foil # 23 The University of Texas at Austin

Function Points

Classify each component of product (Inp, Out, Inq, Maf, Inf) as simple,
average, or complex.
— Assign appropriate number of function points
— Sum gives UFP (unadjusted function points)

Level of Complexity

Component Simple Average Complex

Input item 3 4 l¢]
Qutput item 4 5 7
Inquiry 3 4 6
Master file 7 10 15
Interface 5 7 10
EE 382V Class Notes Foil # 24 The University of Texas at Austin

12

Function Points (cont)

Compute technical complexity

factor (TCF)

— Assign value from 0 (“not

present”) to 5 (“strong influence
throughout”) to each of 14 factors

such as transaction rates,
portability

— Add 14 numbers = total degree

of influence (DI)
TCF = 0.65 + 0.01 x DI

— Technical complexity factor (TCF)

lies between 0.65 and 1.35

EE 382V Class Notes

Foil # 25

Fe 00 R =00

02 5 B e B RE o

Data communication
Distributed data processing
Performance criteria
Heavily utilized hardware
High transaction rates
Online data entry
End-user efficiency
Online updating
Complex computations
Reusability

Ease of installation

Ease of operation
Portability
Maintainability

Function Points (cont)

FP = Total Count * [0.65 + .01* 2 (Fi)]

Total count is all the counts times a weighting factor that is
determined for each organization via empirical data

Fi (i=1 to 14) are complexity adjustment values

EE 382V Class Notes

Foil # 26

The University of Texas at Austin

13

Analysis of Function Points

¢ Function points are usually better than KDSI (Thousands of
Delivered Source Instruction)

¢ As with any model there are always inaccuracy.

— Errors in excess of 800% counting KDSI, but only 200% in counting
function points.

¢ Like FFP, maintenance can be inaccurately measured

— Never underestimate the maintenance phase. It can cost more than the
development phase.

EE 382V Class Notes Foil # 27 The University of Texas at Austin

Complexity Adjustment

¢ Does the system require reliable backup and recovery?
e Are data communications required?

e Are there distributed processing functions?

¢ |s performance critical?

e Will the system run in an existing heavily utilized operational
environment?

¢ Does the system require on-line data entry?

¢ Does the online data entry require the input transaction to be built
over multiple screens or operations?

EE 382V Class Notes Foil # 28 The University of Texas at Austin

14

Complexity Adjustment (cont)

Are the master files updated on line?

Are the inputs, outputs, files, or inquiries complex?

Is the internal processing complex?

Is the code designed to be reusable?

Are conversions and installations included in the design?

Is the system designed for multiple installations in different
organizations?

Is the application designed to facilitate change and ease of use by
the user?

EE 382V Class Notes Foil # 29 The University of Texas at Austin

Agenda

e Design metrics

Complexity Models
SW Metrics

HW Metrics

Process Flow Metrics

EE 382V Class Notes Foil # 30 The University of Texas at Austin

15

HW Development Metrics

¢ Architectural complexity

e RTL lines of code

e Number of transistors

e Die size, power, schedule

e Type of design: ASIC, Full Custom, FPGA, Platform Based

e Types of circuitry designed: Random logic, Datapath, memory array
and analog.

e The frequency of operation including compensation for inherent
process speed (gate-delay).

e Amount of reuse: FE (RTL, logic) and BE (physical)
e Process utilization including compensation for process technology.

EE 382V Class Notes Foil # 31 The University of Texas at Austin

Useful Figures-of-Merit (FOM)

¢ Transistor Normalization (T-NORM)

— The “T-NORM FOM” is generated by using the cost drivers to normalize the
transistor counts for a given design. This attempts to account for the fact that
not all transistors are created equally ;-)

e Productivity FOM

— The “Productivity FOM” would be derived by the ratio of the normalized
transistor count to the project duration times the productivity cost drivers.
The productivity cost drivers attempt to account for the fact that not all
designers equally capable and that management has a huge impact.

EE 382V Class Notes Foil # 32 The University of Texas at Austin

16

Generating a T-NORM FOM

e From a technology perspective the interesting cost drivers that
impact transistor normalization are:

1) Types of circuitry designed: Random logic, datapath, memory array and

analog.

2) The frequency of operation including compensation for inherent process

speed (gate-delay).
3) Amount of reuse: FE (RTL, logic) and BE (physical)

4) Process utilization including compensation for process technology.

EE 382V Class Notes Foil # 33 The University of Texas at Austin

Cost drivers and normalization coefficients

1) Types of circuits:
— There are four basic types of circuits:
= Analog - PLL, Sense Amps, /0, mixed signal, etc.
= Random control logic implemented with random logic
= Memory — LSA & SSA
= Datapath — custom or structured (CBD) implementation

— Cost drivers for each type:

= Analog: 3-10

= Random Logic: 1-2

= Datapath: 2-1.2
= Memory: 1-.8

Note: the smaller the cost (driver) the better the productivity.

EE 382V Class Notes Foil # 34 The University of Texas at Austin

17

Cost drivers and normalization coefficients

2) Frequency of operation:
— Function of target frequency and inherent process speed (gate delay)
— The normalization cost drivers are non-linear.

= Transistor counts are increased for higher frequency operation and decreased for
lower.

= The cost drivers typically range from .5 to 2.0 most complex designs utilizing N
and N-1 processes.

3) Reuse:

— Function of the amount of FE and BE reuse.

= Cost drivers range from: 1.0 for “no reuse” to .25 for reuse of FE data.
= The smaller the cost driver the less the effort.

EE 382V Class Notes Foil # 35 The University of Texas at Austin

Cost drivers and normalization coefficients

4) Process utilization:
— Function of:

= Transistor density per type of transistor
= # metal layers
= Pitch per metal layer,

= How many devices have been manufactured in the process

— The normalization cost drivers are non-linear and depend
= Transistor counts increase for higher cost drivers.

= Cost drivers can typically range from .7 to 1.4 for nanometer processes.

EE 382V Class Notes Foil # 36 The University of Texas at Austin

18

Transistor Normalization Example

The transistor normalization equation is expressed as:

Transnorm = Transtot * f(type) * f(freq) * f(reuse) * f(density) * ??7? * ???

Normalization is done on a block by block basis:

Transistor Type Transistor Normalization Cost Drivers
Random Structured Total
Logic Datapath Memory Operation Process Transistors
Block Transistors ~ Transistors ~ Transistors | Circuit Type Freq Reuse Utilization | Normalized
43,127 1.2 il 1 0.96 64,587
BTC 89,560 0.98 1.3 0.25 0.94 26,813
256,000 0.6 1.1 0.25 1.4 59,136
5,490 1.2 13 1 0.96 8,222
ALU 45,898 0.98 1.3 0.25 0.94 13,741
0 0.6 1.1 0.25 1.4 0
95,000 1.2 13 1 0.96 142,272
Inst Decode 65,234 0.98 1.3 0.25 0.94 19,530
455,000 0.3 1.1 0.12 1.4 25,225
EE 382V Class Notes Foil # 37 The University of Texas at Austin

Productivity FOM

e There are number of environmental and methodological cost
drivers which impact productivity. These include:

— High level language modeling

— Debugging environment

— EDP methodology

— Front-end and back-end design & verification methodology

— Designer experience and capabilities

— Management experience and capabilities

— Legacy design issues

— Schedule pressures
— Team locality
— Funding issues

¢ The cost driver normalizes the actual productivity number.

EE 382V Class Notes

Foil # 38

The University of Texas at Austin

19

Productivity Driver Example

2 o 173 2 o @
- | o g £ g g
= © 2) s — 3
s 9% 9. 7 g B 5 %3 % g z
2 3 =% E B g = 55 33 9 2 3
< S3 S = S S 3 o o Q@ S o <o 5 5 z L
2 35 38 3 ER 3 32 23 23 g S s Productivity
Design S EE EE 3 ER3 < B g2g 3< < = § Driver Multiplier
High Level Model Design
Memory| 125 110 110 1.10 110 1.40 110 110 0.90 1.00 120 33
Execution| 1.25 110 1.10 110 110 1.10 1.10 1.10 0.90 1.00 1.30 2.8
Front End| 1.25 110 1.10 1.10 110 1.10 110 1.10 0.90 1.00 110 2.4
Sequencer]| 1.00 0.90 0.90 0.90 0.90 110 110 110 0.90 1.00 0.70 0.6
System| 1.25 1.25 1.25 1.10 110 1.40 1.10 1.10 0.90 1.00 1.30 4.7
Gate Level Model Design
Memory| 1.10 1.10 1.10 110 1.40 1.10 1.10 0.90 0.90 1.10 2.2
Execution| 110 110 1.10 110 1.40 110 0.70 0.90 0.90 110 1.4
Front End| 110 1.10 1.10 110 1.40 110 1.10 0.90 0.90 0.90 18
Sequencer]| 0.90 0.90 0.90 0.90 0.90 110 110 0.90 0.90 110 0.6
System| 1.25 [e25) 1.10 1.10 1.40 1.10 1.10 0.90 0.90 1.10 2.9
Schematic level Design
Memory| 120 1.10 110 110 0.90 0.90 110 1.4
Execution| 120 110 110 110 0.90 0.90 110 1.4
Front End| 1.20 1.10 110 110 0.90 0.90 0.50 0.6
Sequencer]| 120 1.10 110 1.10 0.90 0.90 110 1.4
System| 1.20 1.10 1.10 1.10 0.90 0.90 1.10 1.4
Mask Design 1.10 1.10 1.20 0.95 0.90 1.10 1.4
Library Design 1.30 0.90 110 13
Verification 1.10 1.20 110 1.10 1.20 0.90 1.10 1.9
CHIP Intergration 125 1.25 1.25 110 110 110 110 0.90 1.50 3.9
EE 382V Class Notes Foil # 39 The University of Texas at Austin

Productivity Driver Multiplier (PDM)

e The PDM is used to modulate the average productivity numbers
that the organization has exhibited over a number of projects.
— It takes about 3 projects for a decent set of internal productivity numbers can
be obtained
— Itis possible to obtain industry averages from 3rd party consultants who will
obfuscate the data to protect the identity of the sources.
— Average productivity numbers exist for number of activities:
= HLM Design: LOC/day
= Gate Level Design: Gates/day -> mapped to Transistors/day
= Transistor Level Design: Transistors/day
= Layout Design: Transistors/day
= Verification: LOC/day

EE 382V Class Notes Foil # 40 The University of Texas at Austin

20

Intersection of Productivity and T-NORM

¢ Normalized Productivity is derived by taking the normalized
transistor productivity and multiplying it by the PDM

— Productivitynorm = (Transnorm/person-week) * PDM

¢ Production rate is derived by taking the normalized transistor count
and dividing it by the duration of the project.

— Production Rate = Transnorm/ week

e Both numbers can be generated for the various skills on the project:
— RTL LOC Productivitynorm = 160 LOCnorm /person-week
— Logic design Productivitynorm = 1145 Transnorm /person-week

— Layout design Productivity Rate = 187 Transnorm/week

EE 382V Class Notes Foil # 41 The University of Texas at Austin

Schedule Estimation

¢ The measured productivity and productivity-rate from past projects
are then used to estimate schedules on future projects.

¢ This is accomplished by estimating the various transistor counts,
transistor types, etc. for each block and then applying the
productivity numbers. The results will determine the the
approximate resource requirements and schedule implications.

e Additional cost drivers can also be applied if necessary at this time.
These additional drivers can include:
— Complexity
— Methodology
— Team capabilities
— Team locality

EE 382V Class Notes Foil # 42 The University of Texas at Austin

21

Schedule Estimation Example

¢ The following spread sheet shows how to calculate the number of
person weeks needed for a future project:

Transistor Type Productivity Normalization
Random Structured Total Average CD
Logic Datapath Memory Transistors | Productivity Normalized | Total Person
Block Transistors ~ Transistors Transistors | Normalized | Trans/PW PDM Productivity Weeks
43,127 64,587 1745 1.2 2094.0] 31
BTC 89,560 26,813 3430 13 4459.0) 6
256,000 59,136 4500 1.1 4950.0 12
5,490 8,222 1745 0.9 1570.5 5
ALU 45,898 13,741 3430 1.0 3430.0) 4
0 0 4500 1.0 4500.0) 0
95,000 142,272 1745 0.9 1483.3 96
Inst Decode 65,234 19,530 3430 0.7 2229.5 9
455,000 25,225 4500 1.0 4500.0) 6
EE 382V Class Notes Foil # 43 The University of Texas at Austin

Product Definition Example

e Less complex factors are needed during the product definition

phase:

— Functional Block complexity

— Frequency/Timing push w.r.t. process

¢ Estimates for new micro architectural features are based on data
from comparable historical features weighted by cost drivers
— Useful for evolutionary architectures

— Must extrapolate new cost drivers for new architectures

EE 382V Class Notes

Foil # 44

The University of Texas at Austin

22

Product Definition Example

Estimates for new micro architectural features are based on data
from comparable historical features weighted by cost drivers.

Example:

New part “C” is designed with a 32 choose 8 distributed speculative
scheduler. Historical data indicates that Part “T” has a similar, but
simpler 16 choose 4 scheduler that had a normalized transistor
count of 800K.

Part “C”s scheduler is different, and requires a new estimation.

EE 382V Class Notes Foil # 45 The University of Texas at Austin

Product Definition Example (cont)

Part “C”s scheduler is wider and more complex. Further, part “C” is
higher frequency, utilizing a new process and more challenging
circuit implementation techniques.

Historical comparisons can be used to evaluate these differences
and estimate a complexity factor and frequency factor for the new
design.

In this example Part “C”s estimate would have a complexity factor
of 1.5 and a frequency factor of 1.4 and thus a Normalized TC of :

800K * 1.5 * 1.4 = 1.680M

EE 382V Class Notes Foil # 46 The University of Texas at Austin

23

Product Definition Example - Aftermath

Part “C”s scheduler requires over twice the normalized transistors to
build.

The design team is now forced to consider:
— Is the performance benefit worth the implementation cost?
— Are there simpler methods that still yield acceptable performance?

— Is there a better performance/implementation cost point?

Enabling rigorous complexity analysis and control in the EDP stages of
product development will incentivize architects to innovate less
complex solutions to performance problems.

EE 382V Class Notes Foil # 47 The University of Texas at Austin

Other Cost Driver Examples

Cortex A9 Core - 45nm
ASIC High
Standard Pulse- Domino- Perf Modified
Metrics Baseline Freq Cell Library Rvt flop flop NDL Memory RTL opt Result
Frequency (MHz) 600 1.00 0.97 1.00 1.05 1.05 1.00 1.02 1.14 74794 MHz
Energy (mW/MHz) 0.5 1.00 0.95 1.00 1.05 1.05 1.00 1.00 1.00 0.52 mW/MHz
Area (mm2) 3.00 1.10 1.00 1.00 1.02 1.03 1.00 1.02 1.00 3.50 mm2
Cortex A9 Core 32nm
32nm ARM Multi PVT
45nm Process HP Pulse- Domino- RTL sign-off Modified
Metrics Baseline|Improvement Freq Library LVT flop flop NDL Custom RTLopt reuse corners Result
Frequency (MHz) 600.00 1.21 1.00 1.10 1.10 1.05 1.05 117 1.00 1.10 1.00 1.00 1246.46 MHz
Energy (mW/MHz) | 0.50 0.61 1.00 1.05 1.00 1.05 1.05 110 1.00 1.00 1.00 1.00 0.39 mW/MHz
Schedule (months)| 6.00 1.00 1.17 1.00 1.00 1.10 110 110 1.00 1.00 0.83 117 9.07 Months
Area (mm2) 3.00 0.45 1.21 1.16 1.00 1.06 1.06 1.15 1.00 1.00 1.00 1.00 2.45 mm2
Cortex A9 Core 28 nm
Multi PVT
28nm HP <15% Pulse- Domino- sign-off Modified
Metrics Baseline Process Freq Library LVT flop flop NDL Custom RTLopt corners Result
Frequency (MHz) 600.00 1.25 1.00 1.08 1.13 1.05 1.05 1.15 1.00 1.10 1.00 1270.46 MHz
Energy (mW/MHz) 0.50 0.52 1.00 1.05 1.10 1.05 1.05 1.10 1.00 1.00 1.00 0.36 mW/MHz
Area (mm2) 3.00 0.27 1.21 1.16 1.00 1.06 1.06 1.15 1.00 1.00 1.00 1.47 mm2

EE 382V Class Notes Foil # 48 The University of Texas at Austin

Agenda

e Design metrics

e Complexity Models

e SW Metrics

e HW Metrics

* Process Flow Metrics

EE 382V Class Notes Foil # 49 The University of Texas at Austin

Process vs. Product Metrics

¢ Process Metrics-

Insights of process paradigm, software engineering tasks, work product, or
milestones.

Lead to long term process improvement.

e Product Metrics-

Assesses the state of the project

Track potential risks

Uncover problem areas

Adjust workflow or tasks

Evaluate teams ability to control quality

EE 382V Class Notes Foil # 50 The University of Texas at Austin

25

Process Metrics

e All processes must be monitored.
e Processes must be closed loop.

Environmental Noise ---____
: 7
No
Expected results
—_—
Is the

Yes Produce Results
pror;-:ss Execute Process —
working

What is the process doing? - |
Result Metrics

-- Systematic Noise

* Processes can be over damped or under damped.
— Need to validate what the indicators are telling you.
— How do you adjust an out of control process?

EE 382V Class Notes Foil #51 The University of Texas at Austin

26

