EE382V: System-on-a-Chip (SoC) Design

Lecture 15 – High-Level Synthesis Process

Sources: Rajesh Gupta, UC San Diego

Andreas Gerstlauer

Electrical and Computer Engineering University of Texas at Austin gerstl@ece.utexas.edu

Behavioral Optimization

- Data-flow transformations from software compilation
 - Tree height reduction
 - Balance expression tree, expose parallelism
 - Constant and variable propagation (a = 1; c = 2 * b; \rightarrow c = 2;)
 - Common sub-expression elimination (a=x+y; c=x+y; → c = a;)
 - Dead-code elimination
 - Operator strength reduction (e.g., *4 → << 2)
- · Control-flow transformations for hardware
 - Conditional expansion
 - If (c) then x=A else x=B
 - > compute A and B in parallel, x=(C)?A:B

Instead of three iterations of a loop, replicate the loop body three times

Source: R. Gupta

EE382V: SoC Design, Lecture 15

© 2014 A. Gerstlauer

Tree-Height Reduction

- · Commutativity and associativity
 - x = a + b * c + d $\rightarrow x = (a + d) + b * c$

Distributivity

EE382V: SoC Design, Lecture 15

© 2014 A. Gerstlauer

4

Architectural Synthesis

- Deals with "computational" behavioral descriptions
 - Behavior as sequencing graph (called dependency graph, or data flow graph DFG)
 - Hardware resources as library elements
 - Pipelined or non-pipelined
 - Resource performance in terms of execution delay
 - · Constraints on operation timing
 - Constraints on hardware resource availability
 - Storage as registers, data transfer using wires
- Objective
 - Generate a synchronous, single-phase clock circuit
 - Might have multiple feasible solutions (explore tradeoff)
 - Satisfy constraints, minimize objective:
 - Maximize performance subject to area constraint
 - Minimize area subject to performance constraints

Source: R. Gupta

EE382V: SoC Design, Lecture 15

© 2014 A. Gerstlauer

5

Synthesis in Temporal Domain

- Scheduling and binding in different order or together
 - Schedule is a mapping of operations to time slots (cycles)
 - · Scheduled sequencing graph is a labeled graph

Source: R. Gupta

EE382V: SoC Design, Lecture 15

© 2014 A. Gerstlauer

6

Operation Types

- For each operation, define its type
- For each resource, define a resource type, and a delay (in terms of # cycles)
- T is a relation that maps an operation to a resource type that can implement it
 - $T: V \to \{1, 2, ..., n_{res}\}$
- More general case:
 - A resource type may implement more than one operation type (e.g., ALU)
- Resource binding:
 - Map each operation to a resource with the same type
 - Might have multiple options

Source: R. Gupta

EE382V: SoC Design, Lecture 15

© 2014 A. Gerstlauer

7

Synthesis in Spatial Domain

- Resource sharing
 - More than one operation bound to same resource
 - Operations have to be serialized
 - Can be represented using hyperedges (define vertex partition)

EE382V: SoC Design, Lecture 15 © 2014 A.

© 2014 A. Gerstlauer

8

Source: R. Gupta

Scheduling and Binding

- Resource constraints:
 - Number of resource instances of each type $\{a_k: k=1, 2, ..., n_{res}\}$
- Scheduling:
 - Labeled vertices $\phi(v_3)=1$
- Binding:
 - Hyperedges (or vertex partitions) $\beta(v_2) = adder1$
- Cost:
 - Number of resources ≈ area
 - Registers, steering logic (Muxes, busses), wiring, control unit
- Delay:
 - Start time of the "sink" node
 - Might be affected by steering logic and schedule (control)
 - > Resource-dominated vs. ctrl-dominated

EE382V: SoC Design, Lecture 15

© 2014 A. Gerstlauer

9

Architectural Optimization

- Optimization in view of design space flexibility
- A multi-criteria optimization problem:
 - Determine schedule ϕ and binding β .
 - Under area A, latency λ and cycle time τ objectives
- Find non-dominated points in solution space
- Solution space tradeoff curves:
 - Non-linear, discontinuous
 - Area / latency / cycle time (more?)
- Evaluate (estimate) cost functions
- Unconstrained optimization problems for resource dominated circuits:
 - · Min area: solve for minimal binding
 - Min latency: solve for minimum λ scheduling

EE382V: SoC Design, Lecture 15

© 2014 A. Gerstlauer

10

Scheduling and Binding

- Cost λ and A determined by both φ and β
 - · Also affected by floorplan and detailed routing
- β affected by ϕ :
 - Resources cannot be shared among concurrent ops
- ϕ affected by β :
 - Resources cannot be shared among concurrent ops
 - When register and steering logic delays added to execution delays, might violate cycle time
- Order?
 - · Apply either one (scheduling, binding) first

EE382V: SoC Design, Lecture 15

© 2014 A. Gerstlauer

11

How Is the Datapath Implemented?

- Assuming the following schedule and binding
 - Wires between modules?
 - Input selection?
 - How does binding/ scheduling affect congestion?
 - How does binding/ scheduling affect steering logic?

EE382V: SoC Design, Lecture 15

© 2014 A. Gerstlauer

12