o

System Software Integration:
An Expansive View

Steven P. Smith

System-on-Chip Design

EE382V
Fall, 2014

EE382 —

SoC Design — Software Integration SPS-1 University of Texas at Austin

-

Overview \

Some Definitions

Introduction: The Expanding Challenge

Phases of System Software Integration

From Requirements to Software Components Identification
Software Selection Issues during Architectural Design
Unit-Level Integration and Software Performance Assessment
Subsystem and Functional-Level Software Integration
System-Level Software Integration and Testing

Conclusions

EE382 —

==

SoC Design — Software Integration SPS-2 University of Texas at Austin

: Definitions N\

* System Integration: The task of creating a properly
functioning system from its constituent components

* Hardware
* Firmware
* Software
* System Hardware Integration
* Are the components wired together correctly?
* System Software Integration
* Typically assumes hardware integration is largely complete

* The final step before acceptance testing and deployment

o

EE382 — SoC Design — Software Integration SPS-3 University of Texas at Austin

/ The System Engineering Process \

l
Requirements|. Subsystem
Definition | ™ Integration

l . Acceptance l
System Test Plan Subsystem
Specification [™. 1 Test

System System
Design) " System Integration Qf course,
l e _| Integration |-.. l iteration
4 Test Plan occurs at all
Detailed i v |System Test & levels and
Design [~ |™, i % | Verification among most
l Y : 3 l levels...
Module Design| * Subsystem ‘ Acceptance
and Coding “{ Integration | Test
l Test Plans l
Module/Unit System

\ Test Deployment

EE382 — SoC Design — Software Integration SPS-4 University of Texas at Austin

/Software Integration in Embedded Systema
“The Good Old Days”

* Software developed internally

* Design-specific software

* No consideration given to software reuse

* Direct access to software design, source code and developer
* Uni-processors predominate

* No inter-processor and limited inter-process communications
* Small, simple real-time operating systems (RTOS)

* Easy porting and configuration

* Comparatively simple debugging and testing

* Single-function systems

EE382 — SoC Design — Software Integration SPS-5 University of Texas at Austin

/Software Integration in Embedded Systems\
Today: Life Gets Complicated.

Software components gathered from many sources

Heterogeneous multi-processors

Customized, configurable processors

* Memory management units (MMUS)

Mix of operating systems: RTOS and Linux

Mix of functions and operating modes

* Browser-based configuration

Multiple debuggers, no interoperability among tools

&Enormously challenging testing implications /

EE382 — SoC Design — Software Integration SPS-6 University of Texas at Austin

/ Implications for Software Integration \
of Embedded System Trends

* System software integration issues must be addressed
early and continually throughout the design!

* Tool and software component selection must be made in
the context of system-level design and development
considerations.

* Debugger interoperability increasingly critical

* Integrated Development Environments (IDE) may have long
learning curves

* Compilers each have their own idiosyncrasies

* Disparate operating systems don’t often play well together.

KNO longer just a “back-end” task

EE382 — SoC Design — Software Integration SPS-7 University of Texas at Austin

/ Phases of the System Software
Design and Integration Effort

Identification of required software functions
* Begins during requirements specification

* Architecture decisions may add or remove requirements

Mapping of required functions to candidate components

Analysis of trade-offs in software component selection

Initial software component selection or specification

Performance analysis, verification

* Subsystem integration, performance analysis, verification

&System integration, performance analysis, verification)

EE382 — SoC Design — Software Integration SPS-8 University of Texas at Austin

/ The System Engineering Process \
'

) Requirements|. Subsystem Subsyst
ldentify N ! . Subsystem
Requ/ré/d/ Definition T Integration Software
Software l . Acceptance l Pj/folrmqn;‘e
Functions Test Plan . nalysis
N system i Subsystem Verification
Identify | Specification [*. ’ Test
Candidate l l
Software
Componentsy| ~ System System System
Desi ___ I ’
Analysis ~ A s v System ntegration ™ performance
Sh l : -, | Integration |-... l ;
of Software “4 Test Plan ’ Anq/,_VS/s. &
Design N Detailed .| System Test &/ Verification
Trade-offs 3| Design [|*, Verification
Module Design . Subsystem ‘ Acceptance
Parmnca |_and Coding *{ Integration | Test
Analysis & l Test Plans l
Verificatiom™\J" odule/Unit System
K Test Deployment

EE382 — SoC Design — Software Integration

SPS-9 University of Texas at Austin

/ |ldentifying Required Software Functions\

Embedded system design often begins with an executable
specification, or a high-level language (HLL) application.

* Or, increasingly, two, or three...

* Natural starting place for software function identification

Initial hardware/software partitioning during architectural
design defines required software functions.

* This is a highly iterative process as performance bottlenecks
and other design criteria come into sharper focus.

Some software functions are not performance critical, but
may demand significant flexibility.

* E.g., the Internet refrigerator and its embedded http server

End-user or OEM/VAR customization requirements also

\dictate required software functionality. Java, anyone? /

EE382 — SoC Design — Software Integration

SPS-10 University of Texas at Austin

/ System Software Elements \

System System System External
Application 1 | Application2 | * * *® Application n Interface

Embedded Operating System(s)

Hardware Abstraction Custom Boot Drivers
Layer (HAL) IPC Loader(s)
Interfaces to: Provides inter-processor messaging,
- Hardware Accelerators synchronization, and notification functions
- Real-time clocks
- IPC control hardware
(e.g., semaphores)
- Boot hardware (flash)
EE382 — SoC Design — Software Integration SPS-11 University of Texas at Austin

a Identifying Candidate I
Software Components

* Map required software functions into specific candidate
components

* Buy, adapt or develop?

* Requires consideration of all design criteria, not to mention
business issues

» Difficult to evaluate early in the project

> But also difficult to revisit later in the effort

* Operating system or executive selections are a key step.

* A uniform operating system in a multi-processor SoC is
extremely desirable, but not always feasible.

N .y

EE382 — SoC Design — Software Integration SPS-12 University of Texas at Austin

/" Operating Systems Selection Criteria ™\
* Real-time capabilities

* “Hard” real-time: guaranteed maximum latency for entering
interrupt service routines (ISRs)

* “Soft” real-time: no guarantees, but fairly quick response to
real-time events (not for pacemakers, flight control, etc.)

* General-purpose features (e.g., file system, web server)

Operating system acquisition and unit costs
* Inter-process and inter-processor communications support
Reliability, Quality

* Resource requirements

* Memory footprint of program and data
K Boot, power-on-self-test (P.O.S.T.) mechanisms

EE382 — SoC Design — Software Integration SPS-13 University of Texas at Austin

/ Latency in Real-Time Applications \

Interrupt

Service Signal Control Control

Routine Operating Task Calculations
Interrupt Starts System Awakens Complete

| | |

time
t t, t, ts
————— > |Interrupt Latency
Preemption Latency .
Minimum
RT Period

N .’

EE382 — SoC Design — Software Integration SPS-14 University of Texas at Austin

/ Embedded Operating System Trends \

* Linux - “Hard” real-time embedded Linux versions exist, but
worst-case response times may still be too long.

* Real-Time Application Interface (RTAl.org)
* Linux Extensions for Real Time (LXRT) - built on RTAI

* Linux “on top” of a hard RTOS or kernel
* Linux executes only when the RTOS is otherwise idle
* Fine for configuration and other non-critical functions

* Highly variable performance during normal system operation;
Linux may be starved indefinitely by the RTOS.

* Growing support ecosystem for embedded Linux
k' Porting, configuring still a non-trivial effort

EE382 — SoC Design — Software Integration SPS-15 University of Texas at Austin

a Real-Time Linux N\

* Linux with Real-Time Application Interface
* RTAIl is a hard real-time kernel that runs Linux in its idle loop

* Real-time applications run in kernel mode

* Linux with RTAI and Linux Extensions for Real-Time

* LXRT Extends RTAI to support Linux real-time user mode
applications

* Enables use of Linux memory management
* Pairs a kernel mode RT task with the user mode task
* Long paths in Linux kernel getting shorter and shorter

* Real-time extensions have now merged with the core kernel

K * Tuning the kernel using scheduling policy selection /

EE382 — SoC Design — Software Integration SPS-16 University of Texas at Austin

- Real-Time Middleware N\
* CORBA - Common Object Request Broker Architecture

* Standard mechanism for medium to coarse grain parallelism
based on objects

* Separation of object interface from implementation
* Services available on a computing resource can be queried
* Standardized argument marshalling, function calls, etc.

* Platform and language independent

* Object Management Group (omg.org)
* Version 2.0 released in 2003

* CORBA Real-Time
* Adds RT scheduling services to CORBA

* Enables (but does not explicitly provide) load balang

EE382 — SoC Design — Software Integration SPS-17 University of Texas at Austin

a Data Distribution Service (DDS) \
for Real-Time Systems

* Data-centric standard based on a publish/subscribe model
* OMG standard gaining acceptance

* Enables decoupling of software elements in heterogeneous
real-time environments

* Two Layers in standard

* Data-Centric Publish/Subscribe (DCPS) is the base layer; low-
overhead, modest footprint

* Data Local Reconstruction Layer (DLRL) is upper layer,
provides an object-oriented application-level interface; use is
optional

* Commercial and open source implementations available

KCommerciaI and open source implementations available /

EE382 — SoC Design — Software Integration SPS-18 University of Texas at Austin

/ Embedded Software Component Sources\

{ OEMIVAR/ %, Open
i End-User Source
Components

% Developed

Cooperative
Development

New,
Internally
Developed

Internally
Developed,
Reused

Embedded
Linux

SoC

COTS
Components
w/o Support

New,
Externally
Developed

COTS
Components
with Support

o

EE382 — SoC Design — Software Integration SPS-19 University of Texas at Austin

/ Detailed Embedded Software \
Component Selection Issues

* Develop internally or externally?

* Acceptable cost to develop or acquire?

* Source code or black-box, object-only module?

* Well-documented?

* Standard call specifications?

* Specific to a particular operating system or linker?

* Specific to a particular hardware component?

* E.g., device drivers

K Sufficiently small code and data footprint? /

EE382 — SoC Design — Software Integration SPS-20 University of Texas at Austin

10

/ Detailed Embedded Software \
Component Selection Issues (continued)

Performance critical? Reliable?

Optimized for this system?

Configurable?

Debugging information and tool support?
Module-level tests available?

Run-time dependence upon other modules?
Predictable workload characteristics?

Inter-process/inter-processor communications?

Short learning curve?

EE382 — SoC Design — Software Integration SPS-21 University of Texas at Austin

/ Software Component \
Development and Acquisition

* Hardware abstraction layer (HAL) designed and
developed early in process

* Supports unit-level hardware debug
* Defines virtual machine for application software

* Enables bit-accurate C models to support performance
modeling and software development

* Application-level software components often developed
and partially debugged on general-purpose hardware
before moving to target architecture

* Using bit-accurate C HW models underneath HAL

k IP acquisition may be slow due to business issui§ /

EE382 — SoC Design — Software Integration SPS-22 University of Texas at Austin

11

/ The Role of Regression Testing \

* Regression testing is crucial at each level of software
development and integration.

* Unit, subsystem, and system level

* Detect new design errors, deviations quickly: don’t go
backwards

* Must be run frequently (i.e., daily)

* Goal is to maintain conformance with the gold model
throughout the design

* Comparing results at each level of design not easy

* Behavioral don’t-cares versus explicit values at lower levels

* Increasing time accuracy at lower levels also troublesome

EE382 — SoC Design — Software Integration SPS-23 University of Texas at Austin

/ Unit-Level Hardware/Software Integratiorﬁ

* Unit-level power-on initialization software

* Execute and profile individual software component on its
target hardware or a model of same

* Debugging hardware, HAL, and software simultaneously
* First meaningful opportunity to assess performance
* |terate until software component is “completely” debugged

* Execute and profile all software components residing on a
single target processor

* Assess multi-tasking overhead

* Local busy-waiting on hardware resources or hardware

interrupts

K * Reassess resource requirements n/

EE382 — SoC Design — Software Integration SPS-24 University of Texas at Austin

12

-

Subsystem Software Integration \

Typically addresses specific functionality in comparative

isolation

May cover a single processor and the hardware

resources it manages directly

First opportunity to test and debug HAL with application

software

Provides basis for evaluating performance estimates at

the subsystem level

* Reflects overhead such as busy-waiting and interrupt
servicing not reflected in application-only or unit-level testing

* Enables initial programming and code-tuning for real-time

k execution

EE382 — SoC Design — Software Integration

SPS-25

University of Texas at Austin

/ Subsystem Decomposition Example: \

-

Media Processor

Ethernet System Audio
Control Processor
A A r N
System
Memory
y y \ 4
External Host Bitstream
Interface Processor
Video Frame
Memory

T

-:= Subsystem of interest

EE382 — SoC Design — Software Integration

SPS-26

==

University of Texas at Austin

13

/ Subsystem Decomposition Example: \
Media Processor

-

* Enables specific function-level debug and testing

* Requires cleanly separable hardware components and

\interfaces

EE382 — SoC Design — Software Integration SPS-27 University of Texas at Austin

/ System Software Integration \

* Full system and application-level integration and test

* Mixture of canned tests and real-world workloads

* Extensive regression tests absolutely necessary

Initially based on simulation or emulation platforms

* Provides opportunity for early integration, detection of design
defects

* Too slow for long runs, operating system execution, etc.

Culminates with execution on real silicon

Transition to acceptance testing

* All regression tests pass

K * Random, real workloads behave as expected n/

EE382 — SoC Design — Software Integration SPS-28 University of Texas at Austin

14

-

o

Transition to acceptance testing

System Level Debug Focus \

Performance measurement and tuning
Deadlock avoidance verification
* Still not a proof

Real-time schedule tuning

* Refine interrupt versus polling tradeoffs and decisions

Error detection and recovery

* All regression tests pass

* Random, real workloads behave as expected

EE382 — SoC Design — Software Integration SPS-29 University of Texas at Austin

-

-

Single processor breakpoints

Synchronized single-stepping for repeatable results

Multiprocessor and Multitasking Debug\

Requires cooperating debug tool instances

* No common API means a sole-source debugger (for now)

* Other processors may halt or continue execution on
breakpoints, based on user preferences

* Precise timing usually impossible, especially with multiple
clock speeds/domains

Multiple processor breakpoints

* AND, OR, XOR, IF-THEN-ELSE conditionals combine single
breakpoint triggers

* Repeatability still difficult without synchronized single-
stepping /

EE382 — SoC Design — Software Integration SPS-30 University of Texas at Austin

15

/ Advanced Multiprocessing \
Debug Issues

* Watchpoints for data-triggered execution breaks
* May require hardware assist
* Multiple watchpoints
* Consistent user-interface
* Falls out of sole-source multiprocessor debugger
* Industry needs standardized debugger API, function set.

* Vendors currently prefer closed environments, which may be
fine until a processor is selected that is not supported by the
debugger vendor.

* Adapting debugger to configurable or novel processor

karchitectures not easy

EE382 — SoC Design — Software Integration SPS-31 University of Texas at Austin

a Conclusions \

* Software integration must be addressed at every phase
of the design process

* Definitely NOT merely a back-end task

* May be key driver of system architectural design, processor
selection, etc.

* Already often the single most costly aspect of system
design, current trends will continue to amplify the
importance of system integration issues, particularly for
software.

* Software components from a growing array of sources

* Rapidly expanding number of components

K * Multiple operation modes exacerbate the testing task /

EE382 — SoC Design — Software Integration SPS-32 University of Texas at Austin

16

