
EE382V: System-on-Chip (SoC) Design Lecture 9

© 2014 A. Gerstlauer 1

EE382V:
System-on-a-Chip (SoC) Design

Andreas Gerstlauer
Electrical and Computer Engineering

University of Texas at Austin
gerstl@ece.utexas.edu

Lecture 9 – Real-Time Scheduling

With sources from:
Prof. Margarida Jacome, UT Austin

EE382V: SoC Design, Lecture 9 © 2014 A. Gerstlauer 2

Lecture 9: Outline

• Rate-Monotonic Scheduling (RMS)

• Rate monotonic analysis

• Scheduling algorithm

• Earliest-Deadline First (EDF) scheduling

• EDF algorithm and analysis

• Special cases

• Priority inversion

• Context-switch times

• Interrupts

EE382V: System-on-Chip (SoC) Design Lecture 9

© 2014 A. Gerstlauer 2

EE382V: SoC Design, Lecture 9 © 2014 A. Gerstlauer 3

Margarida Jacome - UT Austin 3

Multiplexing Software Modules

Call B

Return

Resume B

Resume B

Resume A

Resume A

A B A B A B

SUBROUTINES COROUTINES PROCESSES
Hierarchical Symmetric Symmetric

Sequential, static Sequential, static Concurrent, dynamic
Modularity
Complexity

© Margarida Jacome, UT Austin

EE382V: SoC Design, Lecture 9 © 2014 A. Gerstlauer 4

Real-Time Scheduling

• Task types
• Periodic

– Set of tasks { T1, T2, … }
– Period ti
– (Worst-case) execution time ei

• Aperiodic/sporadic
– Arrival/release time ai

• Task dependencies
• Aperiodic tasks with precedence constraints

– Dependencies, task graph

• Preemptive vs. non-preemptive
• Task with higher priority can preempt lower priority one

• Mono- and multi-processor scheduling
• Centralized RTOS, symmetric multi-processing (SMP)
• Distributed RTOS, asymmetric multi-processing (AMP)

EE382V: System-on-Chip (SoC) Design Lecture 9

© 2014 A. Gerstlauer 3

EE382V: SoC Design, Lecture 9 © 2014 A. Gerstlauer 5

• Scheduling Policies
• RMS – Rate Monotonic Scheduling

– Task Priority = Rate = 1/Period
– RMS is the optimal preemptive fixed-priority scheduling policy

• EDF – Earliest Deadline First
– Task Priority = Current Absolute Deadline
– EDF is the optimal preemptive dynamic-priority scheduling policy

• Scheduling assumptions
• Single processor
• All tasks are periodic
• Zero context-switch time
• Worst-case task execution times are known
• No data dependencies among tasks

 RMS and EDF have both been extended to relax these

Periodic Task Scheduling

© Margarida Jacome, UT Austin

EE382V: SoC Design, Lecture 9 © 2014 A. Gerstlauer 6

Metrics

• How do we evaluate a periodic scheduling policy

• Ability to satisfy all deadlines

• CPU utilization
– Percentage of time devoted to useful work

• Scheduling overhead
– Time required to make scheduling decision

• Constraints

• Set of tasks T with period i each
– Response time ri = finish time fi – arrival time ai

– Deadline di: ri < di, in periodic case often di =i

• Minimize latency
– Lateness li = ri - di

© Margarida Jacome, UT Austin

EE382V: System-on-Chip (SoC) Design Lecture 9

© 2014 A. Gerstlauer 4

EE382V: SoC Design, Lecture 9 © 2014 A. Gerstlauer 7

Rate Monotonic Scheduling (RMS)

• Model

• All process run on single CPU.

• Zero context switch time.

• No data dependencies between processes.

• Process execution time is constant.

• Deadline is at end of period.

• Highest-priority ready process runs.

 RMS [Liu and Layland, 73]

• Widely-used, analyzable scheduling policy.

 Rate Monotonic Analysis (RMA)

• Theoretical analysis

© Margarida Jacome, UT Austin

EE382V: SoC Design, Lecture 9 © 2014 A. Gerstlauer 8

Process Parameters

• Ti is execution time of process i
• Deadline i is period of process I

 Response time
• Time required to finish a process/task.

 Critical instant
• Scheduling state that gives worst response time.

– Occurs when all higher-priority processes are ready to execute.

Period i

Pi

Computation time Ti

© Margarida Jacome, UT Austin

EE382V: System-on-Chip (SoC) Design Lecture 9

© 2014 A. Gerstlauer 5

EE382V: SoC Design, Lecture 9 © 2014 A. Gerstlauer 9

Critical Instant

P4

P3

P2

P1

Critical
instant

P1 P1 P1 P1

P2 P2

P3

interfering processes

Worst case period for P4…

© Margarida Jacome, UT Austin

EE382V: SoC Design, Lecture 9 © 2014 A. Gerstlauer 10

RMS Priorities

• Optimal (fixed) priority assignment

• Shortest-period process gets highest priority
– priority based preemption can be used…

• Priority inversely proportional to period

• Break ties arbitrarily

 No fixed-priority scheme does better.

 RMS provides the highest worst case CPU utilization while
ensuring that all processes meet their deadlines

© Margarida Jacome, UT Austin

EE382V: System-on-Chip (SoC) Design Lecture 9

© 2014 A. Gerstlauer 6

EE382V: SoC Design, Lecture 9 © 2014 A. Gerstlauer 11

RMS Example 1

Process Execution Time Period
tiTiPi

41P1

62P2

123P3

0 2 4 6 8 10 12

P3

P2

P1

(least common multiple of
process periods)

Unrolled schedule

Static priority: P1 >> P2 >> P3

© Margarida Jacome, UT Austin

EE382V: SoC Design, Lecture 9 © 2014 A. Gerstlauer 12

RMS CPU Utilization

• Utilization for n processes is

i Ti / i

• Schedulability analysis

i Ti / i ≤ n(21/n – 1)

• As number of tasks approaches infinity, the worst case
maximum utilization approaches 69%
• Yet, is not uncommon to find total utilizations around .90 or

more (.69 is worst case behavior of algorithm)
• Achievable utilization is strongly dependent upon the

relative values of the periods of the tasks comprising the
task set…

© Margarida Jacome, UT Austin

EE382V: System-on-Chip (SoC) Design Lecture 9

© 2014 A. Gerstlauer 7

EE382V: SoC Design, Lecture 9 © 2014 A. Gerstlauer 13

RMS Example 2

Process Execution Time Period
tiTiPi

41P1

86P2

Is this task set schedulable?? If yes, give the CPU utilization.

© Margarida Jacome, UT Austin

EE382V: SoC Design, Lecture 9 © 2014 A. Gerstlauer 14

RMS CPU Utilization (cont’d)

• RMS cannot asymptotically guarantee use of 100% of
CPU, even with zero context switch overhead.

• Must keep idle cycles available to handle worst-case
scenario.

• However, RMS guarantees all processes will always meet
their deadlines.

Time0 5 10

P2 period

P1 period

P1

P2

P1 P1

P2

© Margarida Jacome, UT Austin

EE382V: System-on-Chip (SoC) Design Lecture 9

© 2014 A. Gerstlauer 8

EE382V: SoC Design, Lecture 9 © 2014 A. Gerstlauer 15

RMS Implementation

• Statically fixed priority assignment

• Inversely proportional to period

 Efficient implementation

• Scan processes

• Choose highest-priority active process

© Margarida Jacome, UT Austin

EE382V: SoC Design, Lecture 9 © 2014 A. Gerstlauer 16

Earliest-Deadline-First (EDF) Scheduling

• Dynamic priority scheduling scheme.
• Process closest to its deadline has highest priority
• Requires recalculating processes at every timer interrupt

• EDF analysis
• EDF can use 100% of CPU for worst case
 Optimal for periodic scheduling

• EDF implementation
• On each timer interrupt:

– Compute time to deadline
– Choose process closest to deadline

• Generally considered too expensive to use in practice,
unless the task count is small

– Does not work in an OS with only fixed priorities!

© Margarida Jacome, UT Austin

EE382V: System-on-Chip (SoC) Design Lecture 9

© 2014 A. Gerstlauer 9

EE382V: SoC Design, Lecture 9 © 2014 A. Gerstlauer 17

EDF Example

P2

P1

t

© Margarida Jacome, UT Austin

EE382V: SoC Design, Lecture 9 © 2014 A. Gerstlauer 18

EDF Example

P2

P1

t

© Margarida Jacome, UT Austin

EE382V: System-on-Chip (SoC) Design Lecture 9

© 2014 A. Gerstlauer 10

EE382V: SoC Design, Lecture 9 © 2014 A. Gerstlauer 19

EDF Example

P2

P1

t

© Margarida Jacome, UT Austin

EE382V: SoC Design, Lecture 9 © 2014 A. Gerstlauer 20

EDF Example

P2

P1

t

© Margarida Jacome, UT Austin

EE382V: System-on-Chip (SoC) Design Lecture 9

© 2014 A. Gerstlauer 11

EE382V: SoC Design, Lecture 9 © 2014 A. Gerstlauer 21

EDF Example

P2

P1

t

© Margarida Jacome, UT Austin

EE382V: SoC Design, Lecture 9 © 2014 A. Gerstlauer 22

EDF Example

P2

P1

t

No process is
ready…

© Margarida Jacome, UT Austin

EE382V: System-on-Chip (SoC) Design Lecture 9

© 2014 A. Gerstlauer 12

EE382V: SoC Design, Lecture 9 © 2014 A. Gerstlauer 23

EDF Example

P2

P1

t

© Margarida Jacome, UT Austin

EE382V: SoC Design, Lecture 9 © 2014 A. Gerstlauer 24

EDF Example

P2

P1

© Margarida Jacome, UT Austin

EE382V: System-on-Chip (SoC) Design Lecture 9

© 2014 A. Gerstlauer 13

EE382V: SoC Design, Lecture 9 © 2014 A. Gerstlauer 25

Real-Time Scheduling Algorithms (1)

• Periodic, independent tasks

• Schedulability only (preemptive, static or dynamic)
– Rate Monotonic Scheduling (RMS) is optimal fixed priority scheme

» Does not achieve 100% CPU utilization for guaranteed schedulability

– Earliest Deadline First (EDF) is optimal dynamic priority scheme
» 100% utilization, but runtime support/overhead for dynamic priorities

• Aperiodic, independent tasks (task set)

• Simultaneous (at system start) arrival times
– Earliest Due Date (EDD) minimizes max. lateness (non-preemptive)

• Arbitrary arrival times (statically know or dynamic)
– Earliest Deadline First (EDF) minimizes max. lateness (preemptive)

– Without preemption optimality only possible if arrival times known

• Aperiodic, dependent tasks (task graph)

• Simultaneous (at system start) arrival times
– Latest Deadline First (LDF) minimizes max. lateness (non-preempt.)

• Arbitrary arrival times (statically know or dynamic)
– Modified EDF* w/ successor-adjusted deadlines

EE382V: SoC Design, Lecture 9 © 2014 A. Gerstlauer 26

Real-Time Scheduling Algorithms (2)

• Periodic/sporadic, dependent tasks

• NP-complete in general
– Use of heuristics

– Split into periodic, independent and aperiodic, dependent subgraphs

 Scheduling anomalies through dependencies (blocking)

• Deadlocks

• Priority inversions

EE382V: System-on-Chip (SoC) Design Lecture 9

© 2014 A. Gerstlauer 14

EE382V: SoC Design, Lecture 9 © 2014 A. Gerstlauer 27

Scheduling Anomalies

• “What really happened on Mars?” [WindRiver97]

Courtesy NASA/JPL-Caltech

 Priority inversion

EE382V: SoC Design, Lecture 9 © 2014 A. Gerstlauer 28

Priority Inversion

• Low-priority process keeps high-priority process from
running.

• Improper use of system resources can cause scheduling
problems

– Low-priority process grabs I/O device.

– High-priority device needs I/O device, but can’t get it until low-priority
process is done.

 Can cause deadlock

 Give priorities to system resources

 Have process inherit the priority of a resource that it
requests

 Low-priority process inherits priority of device if higher

EE382V: System-on-Chip (SoC) Design Lecture 9

© 2014 A. Gerstlauer 15

EE382V: SoC Design, Lecture 9 © 2014 A. Gerstlauer 29

Priority-Based Scheduling

• Normal operation

• Priority inversion

Time

Priority

Low

High

t1 t2 tn-1 tn

Deadline

Low

High

t1 t2 tn-1 tn

Deadline

Time

Priority

t3

 Blocked

 Deadline violation

Critical
section

EE382V: SoC Design, Lecture 9 © 2014 A. Gerstlauer 30

Priority Inversion

• Low-priority process blocking a high-priority one
• Starvation of high priority processes

 Avoid preemption in critical sections [Sha90]
 Interrupt masking
 Priority Ceiling Protocol (PCP)
 Priority Inheritance Protocol (PIP)

Low

Middle

t1 t2 tn-1 tn
Time

Priority

t3

High

tn-3 tn-2

Unbounded priority
inversion

EE382V: System-on-Chip (SoC) Design Lecture 9

© 2014 A. Gerstlauer 16

EE382V: SoC Design, Lecture 9 © 2014 A. Gerstlauer 31

Priority Ceiling Protocol (PCP)

• Elevate priorities in critical sections
• Assign priority ceilings to semaphore/mutex

 Change task priority on semaphore/mutex access
 Also avoid potential deadlocks
 Potential overhead & blocking of unrelated processes

Low

Middle

t1 t2
Time

Priority

t3

High

tn-1 tnt4 t5

Ceiling

EE382V: SoC Design, Lecture 9 © 2014 A. Gerstlauer 32

• Dynamically elevate priorities only when needed
• Raise priorities to level of requesting task

 Change priority on request by higher-priority task
 Potential for deadlocks remains
 Potentially multiple priority changes per critical section

Priority Inheritance Protocol (PIP)

Low

Middle

t1 t2
Time

Priority

t3

High

t4 tn-1 tnt5

EE382V: System-on-Chip (SoC) Design Lecture 9

© 2014 A. Gerstlauer 17

EE382V: SoC Design, Lecture 9 © 2014 A. Gerstlauer 33

Performance Evaluation

• Context switch time

• Non-zero context switch time can push limits of a tight
schedule

• Hard to calculate effects
– Depends on order of context switches

• In practice, OS context switch overhead is small

• May want to test

• Context switch time assumptions on real platform

• Scheduling policy

© Margarida Jacome, UT Austin

EE382V: SoC Design, Lecture 9 © 2014 A. Gerstlauer 34

What about interrupts?

• Interrupt overhead
• Interrupts take time away from processes
• Other event processing may be masked

during interrupt service routine (ISR)
• Perform minimum work possible in the

interrupt handler

 Device processing structure
• Interrupt service routine (ISR) performs

minimal I/O.
– Get register values, put register values

• Interrupt service process/thread performs
most of device function.

P1

OS

P2

OS

intr

P3

© Margarida Jacome, UT Austin

EE382V: System-on-Chip (SoC) Design Lecture 9

© 2014 A. Gerstlauer 18

EE382V: SoC Design, Lecture 9 © 2014 A. Gerstlauer 35

Caches

• Processes can cause additional caching problems.

• Even if individual processes are well-behaved, processes
may interfere with each other

• Worst-case execution time with bad cache behavior is
usually much worse than execution time with good cache
behavior

 Perform schedulability analysis without caches

• Take any online performance gains as “free lunch”

© Margarida Jacome, UT Austin

EE382V: SoC Design, Lecture 9 © 2014 A. Gerstlauer 36

Lecture 9: Summary

• Scheduling
• Dynamic, preemptive & priority-based scheduling

– Real-time operating system (RTOS)

• Periodic or aperiodic tasks
– Earliest-deadline-first (EDF)

• Independent tasks
– Heuristics or partitioning first in case of dependencies

• What if your set of processes is unschedulable?
• Change deadlines in requirements.
• Reduce execution times of processes.
• Get a faster CPU
 Get an Accelerator!

