
1

Software Implementation of a Digital Radio
Mondiale (DRM) Receiver, Part I (Framework)

Volker Fischer

Institute for Communication Technology

Darmstadt University of Technology

v.fischer@nt.tu-darmstadt.de

Abstract— The bandwidth of a DRM pass-band signal is
smaller than 20 kHz and the number of carriers used in the
OFDM-modulation is relatively small (Max 460). This char-
acteristic motivates a real-time software implementation of
a DRM-receiver on a conventional personal computer (PC)
using the soundcard as the input and output device. In this
paper, the basic concept and the framework of an actual
implementation is described.

I. Introduction

THE DRM-receiver consists of several modules (OFDM-
demodulation, channel decoder, demultiplexer, etc.)

and multiple data streams [1]. Each module is defined to
work on a block-wise processing of data. Since some mod-
ules need more or less data to perform a certain task, an in-
telligent data transfer between the modules is needed. Also
the merging and splitting of data streams in the multiplexer
has to be taken care of. To separate the specific implemen-
tation of a module from the standard task of organizing
the data transfer between the modules, an object-oriented
implementation was chosen. Furthermore, this type of im-
plementation increases the clearness and provides an easier
maintenance of the resulting code.
The resulting framework consists of a class CBuffer,

which manages the data transfer between different mod-
ules, and a class CModule, from which all modules are de-
rived.
The basic concept of the framework is described in

Sect. II. In Sect. III the class CModule is described. The
cyclic-buffer class CBuffer is specified in Sect. IV.

II. Basic concept

Since we have a block-wise processing of quasi continuous
realtime input- and output-data-streams, we have to decide
whether the input or the output stream defines the timing.
In this implementation we use an input-driven processing
sequence. When a new data block from the sound-card
is available, the data is processed and fed to the output
device (e.g. sound-card or a network stream).
The main loop of the receiver calls the ”processing” - rou-

tine of the base-class CModule of all modules successively.
This routine checks the intermediate cyclic input-buffer
(derived from CBuffer) whether enough data is available
or not. When data is available, the processing-routine of
the derived class is called. This routine produces an out-
put which is stored in the intermediate cyclic-buffer of the
following module. Thereby, the sequence of the modules

in the main loop is irrelevant. The resulting structure is
illustrated in Figure 1.

CModule

CDerivedModule1

CBuffer CBuffer

CModule

CDerivedModule2

CBuffer

Fig. 1. Illustration of dependency between CModule, CBuffer and
derived modules.

III. Class CModule

The class CModule basically relieves the implementation
of a derived module from managing the data transfer be-
tween different modules. For a single-input, single-output
module, CModule defines two internal buffers and two vari-
ables, signalling the size of the buffers (one for input and
one for output data blocks). CModule is responsible for allo-
cating and deleting these resources. These buffers contain
exactly the amount of data needed for one module-cycle.
The module is responsible for setting the right buffer-sizes,
which is done in a special initialization-routine. In case
that the block sizes vary with time, a maximum block-size
must be defined. The current size is then adjusted in the
processing routine of the module.

The task for the CModule is to check the cyclic-input-
buffer (CBuffer) whether enough data for processing is
available. If so, it has to copy one block of data from the
cyclic-buffer to the internal memory block and afterwards
call the processing routine. When the data is processed,
CModule copies the output-data from the internal buffer in
the cyclic-buffer of the following module.

For multiple-input blocks, an internal buffer for all in-
put streams has to be provided by the CModule class. In
that case, the processing routine is called when all internal
buffers are filled.



2

IV. Class CBuffer

The class CBuffer is an implementation of a cyclic-
buffer. The advantage of using a cyclic-buffer is to use
different sizes of input- and output-blocks, which is neces-
sary for the different DRM-modules.
This implementation emulates a cyclic-buffer by using a

linear buffer and managing the wrap-around of data-blocks.
It defines two pointers which store the position of the begin-
ning and end of the useful data-block in the buffer. When
new data is read or written, the positions of the pointers
are adapted. An ambiguous situation occurs when both
pointers point to the same place. In this case, the buffer
could be empty or total full. To obviate this ambiguity, a
flag is introduced to indicate the state of the buffer after
reading or writing a block of data. With this design, Data-
blocks of any size can be written until the total buffer-size
is reached. In the same manner, data can be read until the
buffer is empty.
To be type-independent, this class is a template-class.

The data type of the memory must be defined, when the
class object is declared.

References

[1] European Telecommunications Standards Institute: Digital Ra-
dio Mondiale (DRM), System Specification ETSI TS 101980,
2001.


