

Objectives

> After completing this module, you will be able to:

- Understand how to achieve greater design productivity using Vivado IP Integrator
- Understand how to rapidly create and reuse subsystem level IP with Vivado and IP Integrator
- Describe the embedded design flow in Vivado
- Explain how IP is added to extend processing system functionality

IP Integrator and Embedded System Design 14-2

© Copyright 2014 Xilinx

EXILINX > ALL PROGRAMMABLE.

The PS and the PL			
 > The Zynq-7000 AP SoC architecture consists of two major sections - PS: Processing system • Dual ARM Cortex-A9 processor based • Multiple peripherals • Hard silicon core - PL: Programmable logic • Uses the same 7 series programmable logic • Artix™-based devices: Z-7010, Z-7015 and Z-7020 (high-range I/O banks only) • Kintex™-based devices: Z-7030, Z-7045, and Z-7100 (mix of high-range and high-performance I/O banks) 			
IP Integrator and Embedded System Design 14-10	© Copyright 2014 Xilinx	€ XILINX ➤ ALL PROGRAMMABLE.	

PS-PL Configuration Page Navigator PS-PL Configuration Summary Report > GP Master enabling Zyng Block Design 🛨 Search: 🔍 Name > GP Slave enabling PS-PL Configuration Select Description Peripheral I/O Pins General > HP Slave enabling MIO Configuration GP Master AXI Interface > ACP Slave enabling Clock Configuration H AXI GP0 interface 1 Enables General purpose AXI master interface 0 H AXI GP1 interface Enables General purpose AXI master interface 1 DDR Configuration > PS-PL Cross Trigger GP Slave AXI Interface SMC Timing Calculation S AXI GP0 interface Enables General purpose 32-bit AXI Slave interface 0 - For system debugging Interrupts S AXI GP1 interface Enables General purpose 32-bit AXI Slave interface 1 HP Slave AXI Interface S AXI HP0 interface Enables AXI high performance slave interface 0 B S AXI HP1 interface Enables AXI high performance slave interface 1 B AXI HP2 interface Enables AXI high performance slave interface 2 B AXI HP3 interface Enables AXI high performance slave interface 3 ACP Slave AXI Interface S AXI ACP interface Enables AXI coherent 64-bit slave interface Tie off AxUSER Tie off AxUSER signals to always enable coherency PS-PL Cross Trigger interface Enables PL cross trigger signals to PS and vice-versa Input Cross Trigger Output Cross Trigger IP Integrator and Embedded System Design 14-16 © Copyright 2014 Xilinx **EXILINX >** ALL PROGRAMMABLE

Clock Configuration

Exporting to SDK X <u>File Edit Flow Tools Window Layout</u> Export Launch SDF 🚴 Launch SDK Export hardware first New Project.. Launch software development tool Open Project... Open Recent Project Open Example Project - The Hardware Description File (hdf) format Exported location: S <Local to Project> ÷ file containing all the relevant information Save Project As... ace: 🚳 <Local to Project Worksp Write Project Tcl... will be created and placed under the *.sdk Archive Project. Close Project OK Cancel directory Save Constraints As... Close Implemented Design Include bitstream if generated Add Sources.. Alt+A With just BD open Open Checkpoint... Open Source File. Ctrl+N Launch SDK Expor<u>t</u> Export Hardware Write Checkpoint. Launch SDK Export Block Design New IP Location.. Export Bitstream File... - Software development is performed with Open IP Location... Open Recent IP Location Open Log File the Xilinx Software Development Kit tool New File.. 🚴 Export Hardware Open File. Ctrl+O Sources 🕅 Netlist (SDK) Open Recent File Export hardware platform for software development tools With BD and Add Sources... Open Source File The SDK tool will then associate user Alt+A Ctrl in lemented design open Include bitstream Import software projects to hardware Export Launch SDK Export Constraints. Export Phlocks... Export IBIS Model.. Export to: S <Local to Project> Ŧ Open Log File Open Journal File Cancel OK Ctrl+P Export I/O Ports... Export Bitstream F Exit IP Integrator and Embedded System Design 14-20 © Copyright 2014 Xilinx € XILINX > ALL PROGRAMMABLE

IP Peripherals Included as Source (Free)		
Bus and bridge controllers – AXI to AXI connector	External memory	peripheral controller Memory and controller	
Local Memory Bus (LMB)AXI Chip to Chip	High-spe periphera	High-speed and low-speed communication peripherals	
– AHB-Lite to AXI	– AXI 10/	100 Ethernet MAC controller	
 AXI4-Lite to APB AXI4 to AHB-Lite 	– Hard-co – AXI IIC	ore tri-mode Ethernet MAC	
Debug cores	– AXI SP	– AXI SPI	
 Integrated Logic Analyzer 	– AXI UA	– AXI UART	
DMA and Timers	> Other cores		
 Watchdog, fixed interval 	– System	 System monitor 	
Inter-processor communication	– Xilinx A	 Xilinx Analog-to-Digital Converter (XADC) 	
	 Clock g 	enerator	
	– System	 System reset module 	
	 interrup 	t controller	
IP Integrator and Embedded System Design 14-28	© Copyright 2014 Xilinx	€ XILINX ➤ ALL PROGRAMMABLE.	

