
This material exempt per Department of Commerce license exception TSU 

Vivado HLS 2013.3 Version

Improving Performance

© Copyright 2013 Xilinx

After completing this module, you will be able to:

– Add directives to your design

– List number of ways to improve performance

– State directives which are useful to improve latency

– Describe how loops may be handled to improve latency 

– Recognize the dataflow technique that improves throughput of the design

– Describe the pipelining technique that improves throughput of the design

– Identify some of the bottlenecks that impact design performance 

Objectives

Improving Performance 13- 2 © Copyright 2013 Xilinx



Vivado HLS has a number of way to improve performance

– Automatic (and default) optimizations

– Latency directives

– Pipelining to allow concurrent operations

Vivado HLS support techniques to remove performance bottlenecks

– Manipulating loops

– Partitioning and reshaping arrays

Optimizations are performed using directives

– Let’s look first at how to apply and use directives in Vivado HLS

Improving Performance

Improving Performance 13- 3 © Copyright 2013 Xilinx

Adding Directives

Improving Latency

– Manipulating Loops 

Improving Throughput

Performance Bottleneck

Summary

Outline

Improving Performance 13- 4 © Copyright 2013 Xilinx



If the source code is open in the GUI Information pane

– The Directive tab in the Auxiliary pane shows all the locations and objects upon which directives can 

be applied (in the opened C file, not the whole design)

• Functions, Loops, Regions, Arrays, Top-level arguments

– Select the object in the Directive Tab

• “dct” function is selected

– Right-click to open the editor dialog box

– Select a desired directive from the drop-

down menu

• “DATAFLOW” is selected

– Specify the Destination

• Source File

• Directive File

Applying Directives

Improving Performance 13- 5 © Copyright 2013 Xilinx

Directives can be placed in the directives file

– The Tcl command is written into directives.tcl

– There is a directives.tcl file in each solution

• Each solution can have different directives

Directives can be place into the C source

– Pragmas are added (and will remain) in the C 

source file

– Pragmas (#pragma) will be used by every 

solution which uses the code

Optimization Directives: Tcl or Pragma

Once applied the directive will be 

shown in the Directives tab 
(right-click to modify or delete)

Improving Performance 13- 6 © Copyright 2013 Xilinx



Configurations can be set on a solution
– Set the default behavior for that solution

• Open configurations settings from the menu (Solutions > Solution Settings…)

– Choose the configuration from the drop-down menu
• Array Partitioning, Dataflow Memory types, Default IO ports, RTL Settings, Operator binding, Schedule efforts

Solution Configurations

Select 

“General”

“Add” or “Remove” 

configuration settings

Improving Performance 13- 7 © Copyright 2013 Xilinx

Specify the FSM encoding style

– By default the FSM is auto

Add a header string to all RTL output files

– Example: Copyright  Acme Inc.

Add a user specified prefix to all RTL output filenames

– The RTL has the same name as the C functions

– Allow multiple RTL variants of the same top-level function to be 

used together without renaming files

Reset all registers

– By default only the FSM registers and variables initialized in the code are reset

– RAMs are initialized in the RTL and bitstream

Synchronous or Asynchronous reset

– The default is synchronous reset

Active high or low reset

– The default is active high

Example: Configuring the RTL Output

The remainder of the configuration commands 

will be covered throughout the course

Improving Performance 13- 8 © Copyright 2013 Xilinx



Select the New Solution Button

Optionally modify any of the settings

– Part, Clock Period, Uncertainty

– Solution Name

Copy existing directives

– By default selected

– Uncheck if do not want to copy

– No need to copy pragmas, they are in the code

Copy any existing custom commands in to 

the new script.tcl 

– By default selected

– Uncheck if do not want to copy

Copying Directives into New Solutions

Improving Performance 13- 9 © Copyright 2013 Xilinx

Adding Directives

Improving Latency

– Manipulating Loops 

Improving Throughput

Performance Bottleneck

Summary

Outline

Improving Performance 13- 10 © Copyright 2013 Xilinx



Design Latency

– The latency of the design is the number of cycle it takes to output the result

• In this example the latency is 

10 cycles

Design Throughput

– The throughput of the design is the 

number of cycles between new inputs

• By default (no concurrency) this is the 

same as latency

• Next start/read is when this transaction ends

Latency and Throughput – The Performance Factors

Improving Performance 13- 11 © Copyright 2013 Xilinx

In the absence of any concurrency

– Latency is the same as throughput

Pipelining for higher throughput

– Vivado HLS can pipeline functions and 

loops to improve throughput

– Latency and throughput are related 

– We will discuss optimizing for latency first, 

then throughput

Latency and Throughput

Improving Performance 13- 12 © Copyright 2013 Xilinx



Vivado HLS will by default minimize latency 

– Throughput is prioritized above latency 

(no throughput directive is specified here)

– In this example

• The functions are connected as shown

• Assume function B takes longer than any 

other functions

Vivado HLS will automatically take advantage of the parallelism

– It will schedule functions to start 

as soon as they can

• Note it will not do this for loops 

within a function: by default they 

are executed in sequence

Vivado HLS: Minimize latency

Improving Performance 13- 13 © Copyright 2013 Xilinx

Functions

– Vivado HLS will seek to minimize latency by allowing functions to operate in parallel

• As shown on the previous slide

Loops

– Vivado HLS will not schedule loops to operate in parallel by default

• Dataflow optimization must be used or the loops must be unrolled

• Both techniques are discussed in detail later

Operations

– Vivado HLS will seek to minimize latency by allowing the operations to occur in parallel

– It does this within functions and within loops

Default Behavior: Minimizing Latency

Loop:for(i=1;i<3;i++) {

op_Read;
op_Compute;
op_Write;

}

RD

CMP

WR

void foo(...) {

op_Read;
op_Compute;
op_Write;

}

RD

CMP

WR

RD CMP WR

Example with Sequential 

Operations

RD

CMP

WR

Example of Minimizing latency with Parallel 

Operations

Improving Performance 13- 14 © Copyright 2013 Xilinx



Latency constraints can be specified 

– Can define a minimum and/or maximum latency for the location

• This is applied to all objects in the specified scope

– No range specification: schedule for minimum

• Which is the default 

Latency Constraints

Impact of ranges

Improving Performance 13- 15 © Copyright 2013 Xilinx

Latency directives can be applied on functions, loops and regions

Use regions to specify specific locations for latency constraints

– A region is any set of named braces  {…a region…}

• The region My_Region is shown in this example

– This allows the constraint to be applied to a specific range of code

• Here, only the else branch has a latency constraint

Region Specific Latency Constraint

int write_data (int buf, int output) {

if (x < y)  {
return (x + y);

} else  {

My_Region: {

return (y – x) * (y + x);

}

}

Select the region in the 

Directives tab & right-click to 
apply latency directive

Improving Performance 13- 16 © Copyright 2013 Xilinx



Adding Directives

Improving Latency

– Manipulating Loops 

Improving Throughput

Performance Bottleneck

Summary

Outline

Improving Performance 13- 17 © Copyright 2013 Xilinx

By default, loops are rolled

– Each C loop iteration � Implemented in the same state 

– Each C loop iteration � Implemented with same resources

– Loops can be unrolled if their indices are statically determinable at elaboration time

• Not when the number of iterations is variable

Review: Loops 

void foo_top (…) {

...

Add: for (i=3;i>=0;i--) {

b = a[i] + b;

...

}

foo_top

+

Synthesis

N

a[N]
b

Loops require labels if they are to be referenced  by Tcl directives 

(GUI will auto-add labels)

Improving Performance 13- 18 © Copyright 2013 Xilinx



A rolled loop can only be optimized so much

– Given this example, where the delay of the adder is small compared to the clock frequency

– This rolled loop will never take less than 4 cycles

• No matter what kind of optimization is tried

• This minimum latency is a function of the loop iteration count

Rolled Loops Enforce Latency

void foo_top (…) {

...

Add: for (i=3;i>=0;i--) {

b = a[i] + b;

...

}

Clock
3 2 1 0Adder Delay

Improving Performance 13- 19 © Copyright 2013 Xilinx

Unrolled Loops can Reduce Latency

Select loop “Add” in 
the directives pane 

and right-click
Unrolled loops allow 

greater option & 

exploration

Unrolled loops are likely to result in more hardware 

resources and higher area

Improving Performance 13- 20 © Copyright 2013 Xilinx

Options explained on next 

slide



Fully unrolling loops can create a lot of hardware

Loops can be partially unrolled

– Provides the type of exploration shown in the previous slide

Partial Unrolling

– A standard loop of N iterations can be unrolled to by a factor

– For example unroll by a factor 2, to have N/2 iterations

• Similar to writing new code as shown on the right �

• The break accounts for the condition when N/2 is not an integer

– If “i” is known to be an integer multiple of N

• The user can remove the exit check (and associated logic)

• Vivado HLS is not always be able to determine this is true 

(e.g. if N is an input argument)

• User takes responsibility: verify!

Partial Unrolling

Add: for(int i = 0; i < N; i++) {

a[i] = b[i] + c[i];
}

Add: for(int i = 0; i < N; i += 2) {

a[i] = b[i] + c[i];
if (i+1 >= N) break;
a[i+1] = b[i+1] + c[i+1];

}

for(int i = 0; i < N; i += 2) {

a[i] = b[i] + c[i];
a[i+1] = b[i+1] + c[i+1];

}
An extra adder for 

N/2 cycles trade-off

Effective code after 

compiler 

transformation

Improving Performance 13- 21 © Copyright 2013 Xilinx

Vivado HLS can automatically flatten nested loops

– A faster approach than manually changing the code

Flattening should be specified on the inner most loop

– It will be flattened into the loop above

– The “off” option can prevent loops in the hierarchy from being flattened

Loop Flattening

void foo_top (…) {

...

L1: for (i=3;i>=0;i--) {

[loop body l1 ]

}

L2: for (i=3;i>=0;i--) {

L3: for (j=3;j>=0;j--) {

[loop body l3 ]

}

}

L4: for (i=3;i>=0;i--) {

[loop body l4 ]

}

1

2

3

4

x4

x4

x4

x4

36 transitions

void foo_top (…) {

...

L1: for (i=3;i>=0;i--) {

[loop body l1 ]

}

L2: for (k=15,k>=0;k--) {

[loop body l3 ]

}

L4: for (i=3;i>=0;i--) {

[loop body l1 ]

}

1

2

4

x4

x16

x4

28 transitionsLoops will be flattened by default: use “off” to disable

Improving Performance 13- 22 © Copyright 2013 Xilinx



Only perfect and semi-perfect loops can be flattened

– The loop should be labeled or directives cannot be applied

– Perfect Loops

– Only the inner most loop has body (contents)

– There is no logic specified between the loop statements

– The loop bounds are constant

– Semi-perfect Loops

– Only the inner most loop has body (contents)

– There is no logic specified between the loop statements

– The outer most loop bound can be variable

– Other types

– Should be converted to perfect or semi-perfect loops

Perfect and Semi-Perfect Loops

Loop_outer: for (i=3;i>=0;i--) {

Loop_inner: for (j=3;j>=0;j--) {

[loop body]

}

}

Loop_outer: for (i=3;i>N;i--) {

Loop_inner: for (j=3;j>=0;j--) {

[loop body]

}

}

Loop_outer: for (i=3;i>N;i--) {

[loop body]

Loop_inner: for (j=3;j>=M;j--) {

[loop body]

}

}

Improving Performance 13- 23 © Copyright 2013 Xilinx

Vivado HLS can automatically merge loops

– A faster approach than manually changing the code

– Allows for more efficient architecture explorations

– FIFO reads, which must occur in strict order, can prevent loop merging

• Can be done with the “force” option : user takes responsibility for correctness

Loop Merging

void foo_top (…) {

...

L1: for (i=3;i>=0;i--) {

[loop body l1 ]

}

L2: for (i=3;i>=0;i--) {

L3: for (j=3;j>=0;j--) {

[loop body l3 ]

}

}

L4: for (i=3;i>=0;i--) {

[loop body l4 ]

}

1
x16

void foo_top (…) {

...  

L123: for (l=16,l>=0;l--) {

if (cond1)

[loop body l1 ]

[loop body l3 ]

if (cond4)

[loop body l4 ]

}

1

18 transitions

1

2

3

4

x4

x4

x4

x4

36 transitions

Already flattened

Improving Performance 13- 24 © Copyright 2013 Xilinx



If loop bounds are all variables, they must have the same value

If loops bounds are constants, the maximum constant value is used as the bound of the 

merged loop

– As in the previous example where the maximum loop bounds become 16 (implied by L3 flattened into 

L2 before the merge)

Loops with both variable bound and constant bound cannot be merged

The code between loops to be merged cannot have side effects 

– Multiple execution of this code should generate same results

• A=B is OK, A=B+1 is not

Reads from a FIFO or FIFO interface must always be in sequence

– A FIFO read in one loop will not be a problem

– FIFO reads in multiple loops may become out of sequence

• This prevents loops being merged

Loop Merge Rules

Improving Performance 13- 25 © Copyright 2013 Xilinx

Vivado HLS reports the latency of loops

– Shown in the report file and GUI

Given a variable loop index, the latency cannot be reported

– Vivado HLS does not know the limits of the loop index

– This results in latency reports showing unknown values

The loop tripcount (iteration count) can be specified 

– Apply to the loop in the directives pane

– Allows the reports to show an estimated latency

Loop Reports

Impacts reporting – not synthesis

Improving Performance 13- 26 © Copyright 2013 Xilinx



Constraints

– Vivado HLS accepts constraints for latency

Loop Optimizations

– Latency can be improved by minimizing the number of loop boundaries

• Rolled loops (default) enforce sharing at the expense of latency

• The entry and exits to loops costs clock cycles

Techniques for Minimizing Latency

Improving Performance 13- 27 © Copyright 2013 Xilinx

Adding Directives

Improving Latency

– Manipulating Loops 

Improving Throughput

Performance Bottleneck

Summary

Outline

Improving Performance 13- 28 © Copyright 2013 Xilinx



Given a design with multiple functions

– The code and dataflow are as shown

Vivado HLS will schedule the design

It can also automatically optimize the dataflow for throughput

Improving Throughput

Improving Performance 13- 29 © Copyright 2013 Xilinx

Dataflow Optimization

– Can be used at the top-level function

– Allows blocks of code to operate concurrently

• The blocks can be functions or loops

• Dataflow allows loops to operate concurrently 

– It places channels between the blocks to maintain the data rate

• For arrays the channels will include memory elements to buffer the samples

• For scalars the channel is a register with hand-shakes

Dataflow optimization therefore has an area overhead

– Additional memory blocks are added to the design 

– The timing diagram on the previous page should have a memory access delay between the blocks 

• Not shown to keep explanation of the principle clear

Dataflow Optimization

Improving Performance 13- 30 © Copyright 2013 Xilinx



Dataflow is set using a directive

– Vivado HLS will seek to create the highest performance design

• Throughput of 1

Dataflow Optimization Commands

Improving Performance 13- 31 © Copyright 2013 Xilinx

Configuring Dataflow Memories

– Between functions Vivado HLS uses ping-pong memory buffers by default

• The memory size is defined by the maximum number of producer or consumer elements

– Between loops Vivado HLS will determine if a FIFO can be used in place of a ping-pong buffer

– The memories can be specified to be FIFOs using the Dataflow Configuration 

• Menu: Solution > Solution Settings > config_dataflow

• With FIFOs the user can override the default size of the FIFO

• Note: Setting the FIFO too small may result in an RTL verification failure

Individual Memory Control

– When the default is ping-pong

• Select an array and mark it as Streaming (directive STREAM) to implement the array as a FIFO

– When the default is FIFO

• Select an array and mark it as Streaming (directive STREAM) with option “off” to implement the array as a ping-

pong

Dataflow Optimization through Configuration Command

To use FIFO’s the access must be sequential. If HLS determines that the access is not 

sequential then it will halt and issue a message. If HLS can not determine the sequential 

nature then it will issue warning and continue.

Improving Performance 13- 32 © Copyright 2013 Xilinx



Arrays are passed as single entities by default

– This example uses loops but the same principle applies to functions

Dataflow pipelining allows loop_2 to start when data is ready

– The throughput is improved

– Loops will operate in parallel 

• If dependencies allow

Multi-Rate Functions

– Dataflow buffers data when one function or loop consumes or produces data at different rate from others

IO flow support

– To take maximum advantage of dataflow in streaming designs, the IO interfaces at both ends of the datapath 

should be streaming/handshake types (ap_hs or ap_fifo)

Dataflow : Ideal for streaming arrays & multi-rate functions

Improving Performance 13- 33 © Copyright 2013 Xilinx

Dataflow Optimization

– Dataflow optimization is “coarse grain” pipelining at the function and loop level

– Increases concurrency between functions and loops

– Only works on functions or loops at the top-level of the hierarchy

• Cannot be used in sub-functions

Function & Loop Pipelining

– “Fine grain” pipelining at the level of the operators (*, +, >>, etc.)

– Allows the operations inside the function or loop to operate in parallel

– Unrolls all sub-loops inside the function or loop being pipelined

• Loops with variable bounds cannot be unrolled: This can prevent pipelining

• Unrolling loops increases the number of operations and can increase memory and run time

Pipelining: Dataflow, Functions & Loops

Improving Performance 13- 34 © Copyright 2013 Xilinx



Function Pipelining

There are 3 clock cycles before operation RD can 

occur again

– Throughput = 3 cycles

There are 3 cycles before the 1st output is written

– Latency = 3 cycles

The latency is the same

The throughput is better

– Less cycles, higher throughput

Latency = 3 cycles

Without Pipelining

Throughput = 3 cycles

RD CMP WR RD CMP WR

With Pipelining

Latency = 3 cycles

Throughput = 1 cycle

RD CMP WR

RD CMP WR

void foo(...) {

op_Read;
op_Compute;
op_Write;

}

RD

CMP

WR

Improving Performance 13- 35 © Copyright 2013 Xilinx

Loop Pipelining

There are 3 clock cycles before operation RD can 

occur again

– Throughput = 3 cycles

There are 3 cycles before the 1st output is written

– Latency = 3 cycles

– For the loop, 6 cycles

Latency = 3 cycles

Without Pipelining

Throughput = 3 cycles

RD CMP WR RD CMP WR

With Pipelining

Latency = 3 cycles

Throughput = 1 cycle

RD CMP WR

RD CMP WR

Loop:for(i=1;i<3;i++) {

op_Read;
op_Compute;
op_Write;

}

RD

CMP

WR

Loop Latency = 6 cycles
Loop Latency = 4 cycles

The latency is the same

– The throughput is better

– Less cycles, higher throughput

The latency for all iterations, the loop latency, has been 

improved

Improving Performance 13- 36 © Copyright 2013 Xilinx



Vivado HLS will attempt to unroll all loops nested below a PIPELINE directive

– May not succeed for various reason and/or may lead to unacceptable area

• Loops with variable bounds cannot be unrolled

• Unrolling Multi-level loop nests may create a lot of hardware 

– Pipelining the inner-most loop will result in best performance for area

• Or next one (or two) out if inner-most is modest and fixed

� e.g.  Convolution algorithm

• Outer loops will keep the inner pipeline fed

Pipelining and Function/Loop Hierarchy

void foo(in1[ ][ ], in2[ ][ ], …) {

#pragma AP PIPELINE
…
L1:for(i=1;i<N;i++) {

L2:for(j=0;j<M;j++) {

out[i][j] = in1[i][j] + in2[i][j];
}

}
}

void foo(in1[ ][ ], in2[ ][ ], …) {

…
L1:for(i=1;i<N;i++) {

#pragma AP PIPELINE
L2:for(j=0;j<M;j++) {

out[i][j] = in1[i][j] + in2[i][j];
}

}
}

void foo(in1[ ][ ], in2[ ][ ], …) {

…
L1:for(i=1;i<N;i++) {

L2:for(j=0;j<M;j++) {
#pragma AP PIPELINE

out[i][j] = in1[i][j] + in2[i][j];
}

}
}

Unrolls L1 and L2 

N*M adders, 3(N*M) accesses

Unrolls L2

M adders, 3M accesses

1adder, 3 accesses

Improving Performance 13- 37 © Copyright 2013 Xilinx

The pipeline directive pipelines functions or loops

– This example pipelines the function with an Initiation 

Interval (II) of 2

• The II is the same as the throughput but this term is used 

exclusively with  pipelines

Omit the target II and Vivado HLS will Automatically 

pipeline for the fastest possible design

– Specifying a more accurate maximum may allow more 

sharing (smaller area)

Pipelining Commands

RD CMP WR

RD CMP WR

Initiation Interval (or II)

Improving Performance 13- 38 © Copyright 2013 Xilinx



Pipelines can optionally be flushed

– Flush: when the input enable goes low (no more data) all existing results are flushed out

• The input enable may be from an input interface or from another block in the design

– The default is to stall all existing values in the pipeline

With Flush

– When no new input reads are performed

– Values already in the pipeline are flushed out

Pipeline Flush

Without Flush (default)

Clk

RD CMP WR

RD CMP WR

out1

out2

Data Valid

With Flush (optional)

Clk

RD CMP WR

RD CMP WR

out1

out2

Data Valid

RD CMP RD CMP

Improving Performance 13- 39 © Copyright 2013 Xilinx

Loop Pipelining top-level loop may give a “bubble”

– A “bubble” here is an interruption to the data stream

– Given the following

– The function will process a stream of data

– The next time the function is called, it still needs to execute the initial (init) operations

• These operations are any which occur before the loop starts

• These operations may include interface start/stop/done signals

– This can result in an unexpected interruption of the data stream

Pipelining the Top-Level Loop

Improving Performance 13- 40 © Copyright 2013 Xilinx



Use the “rewind” option for continuous pipelining 

– Immediate re-execution of the top-level loop

– The operation rewinds to the start of the loop

• Ignores any initialization statements before the start of the loop

The rewind portion only effects top-level loops

– Ensures the operations before the loop are never re-executed when the function is re-executed

Continuous Pipelining the Top-Level loop

Improving Performance 13- 41 © Copyright 2013 Xilinx

Pipelining functions unrolls all loops

– Loops with variable bounds cannot be unrolled

– This will prevent pipelining

• Re-code to remove the variables bounds: max bounds with an exit

Feedback prevent/limits pipelines

– Feedback within the code will prevent or limit pipelining

• The pipeline may be limited to higher initiation interval (more cycles, lower throughput)

Resource Contention may prevent pipelining

– Can occur within input and output ports/arguments

– This is a classis way in which arrays limit performance

Issues which prevent Pipelining

Improving Performance 13- 42 © Copyright 2013 Xilinx



Sometimes the II specification cannot be met

– In this example there are 2 read operations on the same port

– An II=1 cannot be implemented

• The same port cannot be read at the same time

• Similar effect with other resource limitations

• For example if functions or multipliers etc. are limited

Vivado HLS will automatically increase the II 

– Vivado HLS will always try to create a design, even if constraints must be violated

Resource Contention: Unfeasible Initiation Intervals

Improving Performance 13- 43 © Copyright 2013 Xilinx

Adding Directives

Improving Latency

– Manipulating Loops 

Improving Throughput

Performance Bottleneck

Summary

Outline

Improving Performance 13- 44 © Copyright 2013 Xilinx



Arrays are intuitive and useful software constructs

– They allow the C algorithm to be easily captured and understood

Array accesses can often be performance bottlenecks 

– Arrays are targeted to a default RAM

• May not be the most ideal memory for performance

• Cannot pipeline with a throughput of 1

Vivado HLS allows arrays to be partitioned and reshaped 

– Allows more optimal configuration of the array

– Provides better implementation of the memory resource

Arrays : Performance bottlenecks

Improving Performance 13- 45 © Copyright 2013 Xilinx

An array in C code is implemented by a memory in the RTL

– By default, arrays are implemented as RAMs, optionally a FIFO

The array can be targeted to any memory 

resource in the library

– The ports and sequential operation are 

defined by the library model

• All RAMs are listed in the Vivado HLS Library Guide

Review: Arrays in HLS

List of 
available 

Cores

Improving Performance 13- 46 © Copyright 2013 Xilinx



If no RAM resource is selected
– Vivado HLS will determine the RAM to use

• It will use a Dual-port if it improves throughput

• Else it will use a single-port

BRAM and LUTRAM selection
– If none is made (e.g. resource RAM_1P used) RTL synthesis will determine if RAM is implemented as 

BRAM or LUTRAM 

– If the user specifies the RAM target (e.g. RAM_1P_BRAM or RAM_1P_LUTRAM is selected ) Vivado
HLS will obey the target

• If LUTRAM is selected Vivado HLS reports registers not BRAM

Array and RAM selection

Improving Performance 13- 47 © Copyright 2013 Xilinx

Partitioning breaks an array into smaller elements

– If the factor is not an integer multiple the final array has fewer elements

– Arrays can be split along any dimension

• If none is specified dimension zero is assumed

• Dimension zero means all dimensions

– All partitions inherit the same resource target

• That is, whatever RAM is specified as the resource target

• Except of course “complete”

Array Partitioning

Improving Performance 13- 48 © Copyright 2013 Xilinx



Vivado HLS can automatically partition arrays to improve throughput

– This is controlled via the array configuration command

– Enable mode throughput_driven

Auto-partition arrays with constant indexing

– When the array index is not a variable

– Arrays below the threshold are auto-partitioned

– Set the threshold using option elem_count_limit

Partition all arrays in the design

– Select option scalarize_all

Include all arrays in partitioning

– The include_ports option will include any arrays on the IO interface when partitioning is performed

• Partitioning these arrays will result in multiple ports and change the inteface

• This may however improve throughput

– Any arrays defined as a global can be included in the partitioning by selecting option include_extern_globals

• By default, global arrays are not partitioned

Configuring Array Partitioning

Improving Performance 13- 49 © Copyright 2013 Xilinx

The array options can be performed on dimensions of the array

Examples

Array Dimensions

my_array[10][6][4]

Dimension 1

Dimension 2
Dimension 3

Dimension 0

(All dimensions)

my_array[10][6][4]  � partition dimension 3 �

my_array_0[10][6]

my_array_1[10][6]

my_array_2[10][6]

my_array_3[10][6]

my_array[10][6][4]  � partition dimension 1                                           �

my_array_0[6][4]

my_array_1[6][4]

my_array_2[6][4]

my_array_3[6][4]

my_array_4[6][4]

my_array_5[6][4]

my_array_6[6][4]

my_array_7[6][4]

my_array_8[6][4]

my_array_9[6][4]
my_array[10][6][4]  � partition dimension 0   � 10x6x4 = 240 individual registers  

Improving Performance 13- 50 © Copyright 2013 Xilinx



Reshaping recombines partitioned arrays back into a single array

– Same options as array partition

– However, reshape automatically recombines 

the parts back into a single element

– The “new” array has the same name

• Same name used for resource targeting

Array Reshaping

Improving Performance 13- 51 © Copyright 2013 Xilinx

Structs are a commonly used coding construct

– By default, structs are separated into their separate elements

Structs and Arrays: The Default Handling

• Treated as separate elements

• On the Interface

− This means separate ports

• Internally

− Separate buses & wires

− Separate control logic, which may be more 
complex, slower and increase latency

Improving Performance 13- 52 © Copyright 2013 Xilinx



Data packing groups structs internally and at the IO Interface

– Creates a single wide bus of all struct elements

Data Packing

• Grouped structure

− First element in the struct becomes the LSB

− Last struct element becomes the MSB

− Arrays are partitioning completely

• On the Interface

− This means a single port

• Internally

− Single bus

− May result in simplified control logic, faster 
and lower latency designs

Improving Performance 13- 53 © Copyright 2013 Xilinx

Adding Directives

Improving Latency

– Manipulating Loops 

Improving Throughput

Performance Bottleneck

Summary

Outline

Improving Performance 13- 54 © Copyright 2013 Xilinx



Directives may be added through GUI 

– Tcl command is added into script.tcl file

– Pragmas are added into the source file

Latency is minimized by default 

– Constraints can be set

Loops may have impact on the latency

Throughput may be improved by pipelining at

– The task, function, and loop level

Arrays may create performance bottleneck if not handled properly

Summary

Improving Performance 13- 55 © Copyright 2013 Xilinx

Optimizing Performance

– Latency optimization

• Specify latency directives

• Unroll loops

• Merge and Flatten loops to reduce loop transition overheads

– Throughput optimization

• Perform Dataflow optimization at the top-level

• Pipeline individual functions and/or loops

• Pipeline the entire function: beware of lots of operations, lots to schedule and it’s not always possible 

– Array Optimizations

• Focus on bottlenecks often caused by memory and port accesses

• Removing bottlenecks improves latency and throughput

� Use Array Partitioning, Reshaping, and Data packing directives to achieve throughput

Summary

Improving Performance 13- 56 © Copyright 2013 Xilinx



This material exempt per Department of Commerce license exception TSU 

Vivado HLS 2013.3 Version
ZedBoard

Lab2 Intro

Improving Performance

© Copyright 2013 Xilinx

After completing this lab, you will be able to:

– Add directives to your design

– Understand the effect of INLINE-ing functions

– Observe the effect of PIPELINE-ing functions

– Improve the performance using various directives

Objectives

Lab2 Intro 13a- 2 © Copyright 2013 Xilinx



The design consists of YUV filter typically used in video processing.   The design 

consists of three functions – rgb2yuv, yuv_scale, and yuv2rgb  

– Each of these functions iterates over the 

entire source image, requiring a single 

source pixel to produce a pixel in the result 

image 

– The scale function simply applies individual 

scale factors, supplied through top-level 

arguments

Lab2 Intro 13a- 3

The Design

© Copyright 2013 Xilinx

Create a Vivado HLS project by executing script from Vivado HLS command prompt

Open the created project in Vivado HLS GUI and analyze 

Apply TRIPCOUNT directive using PRAGMA

Apply PIPELINE directive, generate solution, and analyze output

Apply DATAFLOW directive to improve performance

Export and Implement the design

Lab2 Intro 13a- 4

Procedure

© Copyright 2013 Xilinx



In this lab you learned that even though this design could not be pipelined at the top-

level, a strategy of pipelining the individual loops and then using dataflow optimization 

to make the functions operate in parallel was able to achieve the same high throughput, 

processing one pixel per clock. When DATAFLOW directive is applied, the default 

memory buffers (of ping-pong type) are automatically inserted between the functions. 

Using the fact that the design used only sequential (streaming) data accesses allowed 

the costly memory buffers associated with dataflow optimization to be replaced with 

simple 2 element FIFOs using the Dataflow command configuration

Lab2 Intro 13a- 5

Summary

© Copyright 2013 Xilinx


