& XILINX

ALL PROGRAMMABLE.

Improving Area and Resources

Vivado HLS 2013.3 Version

This material exempt per Department of Commerce license exception TSU © Copyright 2013 Xilinx

=
Obijectives

> After completing this module, you will be able to:

— Describe how arbitrary precision data types can reduce resource utilization
— List various area optimization techniques
— List means by which resource utilization can be reduced

Improving Area and Resources 21- 2 © Copyright 2013 Xilinx & XILINX » ALL PROGRAMMABLE.

=7
Outline

» Optimizing Resource Utilization
> Reducing Area Usage
» Summary

Improving Area and Resources 21- 3 © Copyright 2013 Xilinx & XILINX » ALL PROGRAMMABLE.

Review: Control Scheduling & Binding

» Scheduling & Binding
— Scheduling and Binding are the processes at the heart of HLS

‘ Desiin Source ' Telt:iht;lrglrn;gy mn
|
S ())

Effects Considered 4

[[
. . . . : u 7/ . RTL
» Binding configuration —|_Directives

— Can be used to minimize the number of operations
» The allocation directive

— Can be used to limit the number of operation in scheduling & binding stages
» The resource directive

— Can be used to specify which cores are to be used during binding

Improving Area and Resources 21- 4 © Copyright 2013 Xilinx &£ XILINX » ALL PROGRAMMABLE.

Configuring Binding

» Binding is controlled via a configuration command
— The effort levels determine how much time is spent trying to
map many operators onto fewer cores
— As with all effort levels, they are worth using if you can see
the design close to what is required
« Else the tool will spend time exploring for possibilities
+ And simply increase run time
* Use efforts judiciously
» Binding can be configured to minimize specific
operators
— Can be used to direct Vivado HLS to synthesize with the
minimum number of operations
— The configuration command overrides muxing costs and can
be used to force sharing
» Works on all scopes in a design

Improving Area and Resources 21- 5

© Copyright 2013 Xilinx

]

Command:

config_bind

Parameters

effort [medium

a

min_op high_
medium

OK] l Cancel

£ XILINX » ALL PROGRAMMABLE.

Allocation: Limit the Numbers

add [Addition]
sub [Subtraction]
mul [Multiplication]

> Allocation directive limits different types
— Type: Operation
» The instances are the operators
* Add, mul, urem, etc.
— Type: Core

» The instances are the cores
| Operators and Cores are listed in the Vivado HLS Library Guide

icmp [Integer Compare]
sdiv [Signed Division]
udiv [Unsigned Division]

Ishr [Logical Shift-Right]
ashr [Arithmetic Shift-Right]
shl [Shift-Left]

— Type: Functions
» The functions in the code
+ Discussed in more detail later

> Allocations are defined for a scope

srem [Signed Remainder (Modulus operator)]
urem [Unsigned Remainder (Modulus operator)]

Vivado HLS Directive Editor

— Like all directives, allocations are set for the scope they are applied in
« If the directive is applied to a function, loop or region, it does not include

objects outside that scope

Improving Area and Resources 21- 6

© Copyright 2013 Xilinx

() Source File
(@) Directive File

type (optional):

Type
Directive: |ALLOCATION ~

Destination

Options

instances (required): | |

limit (optional):

operation 3

function
operation
core

£ XILINX » ALL PROGRAMMABLE.

Additional Control: Specify Resources
> User control of Resources
— The resource directive gives user control over the specific resource (core) used to implement
operations vt s e o it i o o
« Select the scope & right-click to apply the directive e
+ Select “core” for a list of resources e s o
+ Specify the variable e e aun B
In this example, “data” is implemented with a e PO e 7
2-stage pipelined multiplier S —— D s ‘
Rl
> Multiple line coding caveat el | Lo JE o
— If multiple operations occur on a single line
— A temporary variable is required to isolate the specific operation ‘v
data= c*d;
a = b*data;
Improving Area and Resources 21-7 © Copyright 2013 Xilinx £ XILINX » ALL PROGRAMMABLE.

=7
Outline

» Optimizing Resource Utilization
> Reducing Area Usage
» Summary

Improving Area and Resources 21- 8 © Copyright 2013 Xilinx &£ XILINX » ALL PROGRAMMABLE.

.|
Improving Area/Resource Utilization

> Control the number of elements
— Directives can be used to control scheduling and binding
» Control the design hierarchy
— Like RTL synthesis, removing the hierarchy can help optimize across function and loop boundaries
+ Functions can be inlined
* Loops can be unrolled
> Array implementation
— Vivado HLS provides directives for combining memories
+ Allowing a single large memory to be used instead of multiple smaller memories
> Bit-width optimization
— Arbitrary precision types ensure correct operator sizing

Improving Area and Resources 21- 9 © Copyright 2013 Xilinx & XILINX » ALL PROGRAMMABLE.

Review: Functions & RTL Hierarchy

» Each function is translated into an RTL block
— Verilog module, VHDL entity

Source Code RTL hierarchy
void A() { ..body A..}
void B() { ..body B..}
void C() {

B();
}
void D() {

B();
}
void foo_top() {

(5

C(...);

D(...)
} my_code.c

Functions can be inlined — the hierarchy removed & the
function dissolved into the surrounding function

Improving Area and Resources 21- 10 © Copyright 2013 Xilinx &£ XILINX » ALL PROGRAMMABLE.

X =7
Controlling Inlining

» Vivado HLS performs some inlining automatically
— This is performed on small logic functions if Vivado HLS determines area or performance will benefit

. 3

» User Control Vivado HLS Directive Editor
— Functions can be specifically inlined Type
« The function itself is inlined Directive: {IRiLRIE =
— Optionally recursively down the hierarchy Dez‘;’:z:’:”e
— Optionally everything within a region can be inlined @ Directive File
« Everything named region or a function or a loop Options
— Optionally inlining can be explicitly prevented et .

 Turn inlining off .

recursive: (]

» Inlining functions allows for greater optimization off 0
— Like ungrouping RTL hierarchies: optimization across boundaries

— Like ungrouping RTL hierarchies it can result in lots of operations & impact run time

Improving Area and Resources 21- 11 © Copyright 2013 Xilinx & XILINX » ALL PROGRAMMABLE.

Function Inlining

» Inlining can be used to remove function hierarchy
No InIining int sumsub_func (int *in1, int *in2, int *outSum, int *outSub) { InIining

*outSum = *in1 + *in2;

*outSub = *in1 - *in2;

}

int shift_func (int *in1, int *in2, int *outA, int *outB) {
*outA = *in1 >> 1;
*outB = *in2 >> 2;

}

void add_sub_pass(int A, int B, int *C, int *D) {

int apb, amb;
int a2, b2; Zero Area

sumsub_func(&A,&B,&apb,&amb);
sumsub_func(&apb,&amb,&a2,&b2);
shift_func(&a2,&b2,C,D);

2 Adders Inlining allows optimization to be performed
2 Subtractors across function hierarchies

Like RTL ungrouping, too much inlining can
create a lot of logic and slow runtime

Improving Area and Resources 21- 12 © Copyright 2013 Xilinx &£ XILINX » ALL PROGRAMMABLE.

Inline and Allocation: Shape the Hierarchy

Easy to Share Cannot be shared Controlling Sharing
void foo() { void dummy1() {
foo();
} 1
void foo_top() { void dummy2() {
oo(...); 00();
foo() }
1 veid foo_top(){
dummy1(_);
dummy2(...); set_directive_allocation -limit 1
allocation -limit 1 } -type function foo_top foo

n foo_top foo
set_directive_inline dummy 1
set_directive_inline dummy2

set_directive_allocation -limit 1
-type function foo_top foo

foo_top foo_top

One RTL block is reused for both Function foo is not within the immediate Inlining brings foo into function foo_top
instances of function foo scope of foo_top where it can be shared

Improving Area and Resources 21- 13 © Copyright 2013 Xilinx & XILINX » ALL PROGRAMMABLE.

Loops

> By default, loops are rolled
— Each C loop iteration = Implemented in the same state
— Each C loop iteration = Implemented with same resources

void foo_top (..) {

Add: for (i=3;i>=@;i--) {
b = a[i] + b;

> For Area optimization

Keeping loops rolled maximizes sharing across loop iterations: each iteration of the
loop uses the same hardware resources

Improving Area and Resources 21- 14 © Copyright 2013 Xilinx &£ XILINX » ALL PROGRAMMABLE.

Loop Merging & Flattening

(related) loops
— Improving area (and sometimes performance)

My_Region: {
#pragma HLS merge loop
for (i=0;i< N; ++i)
Ali] = B[i] + 1;
for (i = 0;i < N; ++i)
Cli] =A[i]/ 2;

}

> Allows Vivado HLS to perform optimizations
— Optimization cannot occur across loop boundaries

> Loop merging & flattening can remove the redundant computation among multiple

for (i = 0; i < N; ++i) {
Alil = B[i] + 1;
Cli] = Alil/ 2;

Effective code after compiler
transformation

for (i = 0; i < N; ++i) Removes A[i], any address logic and any potential
Cli] = (B[i] + 1)/ 2; memory accesses
Improving Area and Resources 21- 15 © Copyright 2013 Xilinx & XILINX » ALL PROGRAMMABLE.

e 2=
Mapping Arrays

» The arrays in the C model may not be ideal for the available RAMs
— The code may have many small arrays
— The array may not utilize the RAMs very well
> Array Mapping

Vivado HLS Directive Editor

— Mapping combines smaller arrays into larger arrays :::tive: weTT =
« Allows arrays to be reconfigured without code edits -
— Specify the array variable to be mapped Desira i
— Give all arrays to be combined the same instance name . ;‘i’r“:;v:'?“e
» Vivado HLS provides options as to the type of mapping I épm |

— Combine the arrays without impacting performance
« Vertical & Horizontal mapping
> Global Arrays
— When a global array is mapped all arrays involved are promoted to global || ™€ (ePtienal: [nerizontal =
— When arrays are in different functions, the target becomes global
> Arrays which are function arguments vertical
— All must be part of the same function interface

variable (required): col_outbuf

instance (optional):

offset (optional):

Improving Area and Resources 21- 16 © Copyright 2013 Xilinx & XILINX » ALL PROGRAMMABLE.

Horizontal Mapping

» Horizontal Mapping
— Combines multiple arrays into longer (horizontal) array

— Optionally allows the arrays to be offset
» The default is to concatenate after the last element

array1pv])) 0) A
array2[N] ENEE I N B B

L

Longer array (horizontal expansion)
with more elements

foo_top
RTL View

array3[N-+2+M] [l i) i i o || o> | e e) S

i Offset of M+ 1
Optionally appl
P an off);etpp Y from the start

* The first array specified (in GUI or Tcl script) starts at location zero

Improving Area and Resources 21- 17 © Copyright 2013 Xilinx

£ XILINX » ALL PROGRAMMABLE.

Vertical Mapping

» Vertical Mapping
— Combines multiple arrays in to an array with more bits

ravrivn R N
=2 N R S R S

Vertical expansion
with more bits
MSB

e e e e e L [

— The first array specified (in Tcl or GUI) starts at the LSB
» Vertical Mapping for performance
— Creates RAMSs with wide words = Parallel accesses

Improving Area and Resources 21- 18 © Copyright 2013 Xilinx

£ XILINX » ALL PROGRAMMABLE.

Arbitrary Precision Integers

» C and C++ have standard types created on the 8-bit boundary
— char (8-bit), short (16-bit), int (32-bit), long long (64-bit)
« Also provides stdint.h (for C), and stdint.h and cstdint (for C++)
» Types: int8_t, uint16_t, uint32_t, int_64_t etc.
— They result in hardware which is not bit-accurate and can give sub-standard QoR
» Vivado HLS provides bit-accurate types in both C and C++
— Plus SystemC types can be used in C++
— Allow any arbitrary bit-width to be specified
— Will simulate with bit-accuracy

#include ap_cinth M #include ap_inth M
void foo_top (...) { void foo_top (...) {
int1 varl; I 1-bit ap_int<1> var; 111-bit
uint1 variu; 1l 1-bit unsigned ap_uint<1> variu; 1/ 1-bit unsigned
int2 var2; Il 2-bit ap_int<2> var2; 11 2-bit
int1024 vari024; 1 1024-bit ap_int<1024> var102s; 111024-bit
uint1024 var1024; /I 1024-bit unsigned ap_int<1024> var1024u; 111024-bit unsigned

Improving Area and Resources 21- 19

© Copyright 2013 Xilinx £ XILINX » ALL PROGRAMMABLE.

Why are Arbitrary Precision types Needed?

» Code using native C int type

int foo_top(int a, int b, intc)

int sum, mul;
sum=a+b;
mult=sum®c;
return mult;

return

» However, if the inputs will only have a max range of 8-bit
— Arbitrary precision data-types should be used

int17 foo_top(int8 a, int8 b, int8 c)

{ : a
int9 sum; : esis b
int17 mult c

sum=a+b;
mult=sum’c;
return mult;

}

foo_top

return

— It will result in smaller & faster hardware with full precision

Improving Area and Resources 21- 20

© Copyright 2013 Xilinx & XILINX » ALL PROGRAMMABLE.

=7
Outline

> Optimizing Resource Utilization
» Reducing Area Usage
» Summary

Improving Area and Resources 21- 21 © Copyright 2013 Xilinx £ XILINX » ALL PROGRAMMABLE.

X =7
Summary

> Resource utilization can be reduced using allocation and binding controls
> Arbitrary precision data types help controlling both the area and resource utilization
» The design structure can be controlled by

— Inlining functions: direct impact on RTL hierarchy & optimization possibilities

— Loops: direct impact on reuse of resources

— Arrays: direct impact on the RAM
» Major area optimization techniques

— Minimize bit widths

— Map smaller arrays into larger arrays

» Make better use of existing RAMs

— Control loop hierarchy

— Control function call hierarchy

— Control the number of operators and cores

Improving Area and Resources 21- 22 © Copyright 2013 Xilinx & XILINX » ALL PROGRAMMABLE.

