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After completing this module, you will be able to:

– Describe how arbitrary precision data types can reduce resource utilization

– List various area optimization techniques

– List means by which resource utilization can be reduced

Objectives
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Optimizing Resource Utilization

Reducing Area Usage

Summary

Outline
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Scheduling & Binding

– Scheduling and Binding are the processes at the heart of HLS

Binding configuration 

– Can be used to minimize the number of operations

The allocation directive

– Can be used to limit the number of operation in scheduling & binding stages

The resource directive

– Can be used to specify which cores are to be used during binding

Review: Control Scheduling & Binding
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Binding is controlled via a configuration command

– The effort levels determine how much time is spent trying to 
map many operators onto fewer cores

– As with all effort levels, they are worth using if you can see 
the design close to what is required

• Else the tool will spend time exploring for possibilities

• And simply increase run time

• Use efforts judiciously

Binding can be configured to minimize specific 
operators

– Can be used to direct Vivado HLS to synthesize with the 
minimum number of operations

– The configuration command overrides muxing costs and can 
be used to force sharing

• Works on all scopes in a design

Configuring Binding

Improving Area and Resources 21- 5 © Copyright 2013 Xilinx

Allocation directive limits different types

– Type: Operation

• The instances are the operators

• Add, mul, urem, etc. 

– Type: Core

• The instances are the cores

• Adder, Addsub, PipeMult2s, etc

– Type: Functions

• The functions in the code

• Discussed in more detail later

Allocations are defined for a scope

– Like all directives, allocations are set for the scope they are applied in

• If the directive is applied to a function, loop or region, it does not include 

objects outside that scope

Allocation: Limit the Numbers

Operators and Cores are listed in the Vivado HLS Library Guide
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User control of Resources

– The resource directive gives user control over the specific resource (core) used to implement 

operations

• Select the scope & right-click to apply the directive

• Select “core” for a list of resources

• Specify the variable

Multiple line coding caveat

– If multiple operations occur on a single line 

– A temporary variable is required to isolate the specific operation

Additional Control: Specify Resources

In this example, “data” is implemented with a 
2-stage pipelined multiplier

a=b*c*d 

data= c*d; 

a = b*data;
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Optimizing Resource Utilization

Reducing Area Usage

Summary

Outline
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Control the number of elements

– Directives can be used to control scheduling and binding

Control the design hierarchy

– Like RTL synthesis, removing the hierarchy can help optimize across function and loop boundaries

• Functions can be inlined

• Loops can be unrolled

Array implementation

– Vivado HLS provides directives for combining memories

• Allowing a single large memory to be used instead of multiple smaller memories

Bit-width optimization

– Arbitrary precision types ensure correct operator sizing

Improving Area/Resource Utilization
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Each function is translated into an RTL block

– Verilog module, VHDL entity

Review: Functions & RTL Hierarchy

void A() { ..body A..}

void B() { ..body B..}
void C() {

B();
}

void D() {

B();

}

void foo_top() {
A(…);

C(…);

D(…)

}

foo_top

A

C
B

D
B

Source Code RTL hierarchy

my_code.c

Functions can be inlined – the hierarchy removed &  the 

function dissolved into the surrounding function
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Vivado HLS performs some inlining automatically

– This is performed on small logic functions if Vivado HLS determines area or performance will benefit

User Control

– Functions can be specifically inlined

• The function itself is inlined

– Optionally recursively down the hierarchy

– Optionally everything within a region can be inlined

• Everything named region or a function or a loop

– Optionally inlining can be explicitly prevented

• Turn inlining off

Inlining functions allows for greater optimization

– Like ungrouping RTL hierarchies: optimization across boundaries

– Like ungrouping RTL hierarchies it can result in lots of operations & impact run time

Controlling Inlining
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sumsub_func

sumsub_func

shift_func

AA

+ -

BB

+ -

>>2>>1

add_sub_pass

Inlining can be used to remove function hierarchy

Function Inlining

int sumsub_func (int *in1, int *in2, int *outSum, int *outSub) {
*outSum = *in1 + *in2;
*outSub = *in1 - *in2;
}

int shift_func (int *in1, int *in2, int *outA, int *outB) {
*outA = *in1 >> 1;
*outB = *in2 >> 2;

}

void add_sub_pass(int A, int B, int *C, int *D) {
int apb, amb;
int a2, b2;

sumsub_func(&A,&B,&apb,&amb);
sumsub_func(&apb,&amb,&a2,&b2);
shift_func(&a2,&b2,C,D);

}

add_sub_pass

AA BB

AA B>>1B>>1

Zero Area

Inlining allows optimization to be performed 

across function hierarchies

No Inlining Inlining

2 Adders

2 Subtractors

A+BA+B A-BA-B

Like RTL ungrouping, too much inlining can 

create a lot of logic and slow runtime

A+B

A-B
2A

A+B

A-B
2A

A+B

A-B
2B

A+B

A-B
2B

+ -

AA B>>1B>>1
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Inline and Allocation: Shape the Hierarchy

One RTL block is reused for both 

instances of function foo

Easy to Share

Function foo is not within the immediate 

scope of foo_top

Cannot be shared

Inlining brings foo into function foo_top 

where it can be shared

Controlling Sharing
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By default, loops are rolled

– Each C loop iteration � Implemented in the same state 

– Each C loop iteration � Implemented with same resources

For Area optimization

Loops 

void foo_top (…) {

...

Add: for (i=3;i>=0;i--) {

b = a[i] + b;

...

}

foo_top

+

Synthesis

N

a[N]
b

Keeping loops rolled maximizes sharing across loop iterations: each iteration of the 

loop uses the same hardware resources

21- 14
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Loop merging & flattening can remove the redundant computation among multiple 

(related) loops

– Improving area (and sometimes performance)

Allows Vivado HLS to perform optimizations

– Optimization cannot occur across loop boundaries

Loop Merging & Flattening

My_Region: { 

#pragma HLS merge loop

for (i = 0; i < N; ++i)

A[i] = B[i] + 1;

for (i = 0; i < N; ++i)

C[i] = A[i] / 2;

}

for (i = 0; i < N; ++i) {

A[i] = B[i] + 1;

C[i] = A[i] / 2;

}
Merge

Removes A[i], any address logic and any potential 

memory accesses

for (i = 0; i < N; ++i)

C[i] = (B[i] + 1) / 2;

Effective code after compiler 

transformation
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The arrays in the C model may not be ideal for the available RAMs
– The code may have many small arrays

– The array may not utilize the RAMs very well

Array Mapping 
– Mapping combines smaller arrays into larger arrays

• Allows arrays to be reconfigured without code edits

– Specify the array variable to be mapped

– Give all arrays to be combined the same instance name

Vivado HLS provides options as to the type of mapping
– Combine the arrays without impacting performance

• Vertical & Horizontal mapping 

Global Arrays
– When a global array is mapped all arrays involved are promoted to global

– When arrays are in different functions, the target becomes global

Arrays which are function arguments
– All must be part of the same function interface

Mapping Arrays
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Horizontal Mapping

– Combines multiple arrays into longer (horizontal) array

– Optionally allows the arrays to be offset

• The default is to concatenate after the last element 

• The first array specified (in GUI or Tcl script) starts at location zero

Horizontal Mapping
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Vertical Mapping

– Combines multiple arrays in to an array with more bits

– The first array specified (in Tcl or GUI) starts at the LSB

Vertical Mapping for performance

– Creates RAMs with wide words � Parallel accesses

Vertical Mapping
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C and C++ have standard types created on the 8-bit boundary

– char (8-bit), short (16-bit), int (32-bit), long long (64-bit)

• Also provides stdint.h (for C), and stdint.h and cstdint (for C++)

• Types: int8_t, uint16_t, uint32_t, int_64_t etc. 

– They result in hardware which is not bit-accurate and can give sub-standard QoR

Vivado HLS provides bit-accurate types in both C and C++

– Plus SystemC types can be used in C++

– Allow any arbitrary bit-width to be specified

– Will simulate with bit-accuracy

Arbitrary Precision Integers
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Code using native C int type

However, if the inputs will only have a max range of 8-bit

– Arbitrary precision data-types should be used

– It will result in smaller & faster hardware with full precision

Why are Arbitrary Precision types Needed?
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Optimizing Resource Utilization

Reducing Area Usage

Summary

Outline
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Resource utilization can be reduced using allocation and binding controls

Arbitrary precision data types help controlling both the area and resource utilization 

The design structure can be controlled by

– Inlining functions: direct impact on RTL hierarchy & optimization possibilities

– Loops: direct impact on reuse of resources

– Arrays: direct impact on the RAM

Major area optimization techniques

– Minimize bit widths

– Map smaller arrays into larger arrays

• Make better use of existing RAMs

– Control loop hierarchy

– Control function call hierarchy

– Control the number of operators and cores

Summary
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