
This material exempt per Department of Commerce license exception TSU

Vivado HLS 2013.3 Version

Improving Area and Resources

© Copyright 2013 Xilinx

After completing this module, you will be able to:

– Describe how arbitrary precision data types can reduce resource utilization

– List various area optimization techniques

– List means by which resource utilization can be reduced

Objectives

Improving Area and Resources 21- 2 © Copyright 2013 Xilinx

Optimizing Resource Utilization

Reducing Area Usage

Summary

Outline

Improving Area and Resources 21- 3 © Copyright 2013 Xilinx

Scheduling & Binding

– Scheduling and Binding are the processes at the heart of HLS

Binding configuration

– Can be used to minimize the number of operations

The allocation directive

– Can be used to limit the number of operation in scheduling & binding stages

The resource directive

– Can be used to specify which cores are to be used during binding

Review: Control Scheduling & Binding

Improving Area and Resources 21- 4 © Copyright 2013 Xilinx

Binding is controlled via a configuration command

– The effort levels determine how much time is spent trying to
map many operators onto fewer cores

– As with all effort levels, they are worth using if you can see
the design close to what is required

• Else the tool will spend time exploring for possibilities

• And simply increase run time

• Use efforts judiciously

Binding can be configured to minimize specific
operators

– Can be used to direct Vivado HLS to synthesize with the
minimum number of operations

– The configuration command overrides muxing costs and can
be used to force sharing

• Works on all scopes in a design

Configuring Binding

Improving Area and Resources 21- 5 © Copyright 2013 Xilinx

Allocation directive limits different types

– Type: Operation

• The instances are the operators

• Add, mul, urem, etc.

– Type: Core

• The instances are the cores

• Adder, Addsub, PipeMult2s, etc

– Type: Functions

• The functions in the code

• Discussed in more detail later

Allocations are defined for a scope

– Like all directives, allocations are set for the scope they are applied in

• If the directive is applied to a function, loop or region, it does not include

objects outside that scope

Allocation: Limit the Numbers

Operators and Cores are listed in the Vivado HLS Library Guide

21- 6

Improving Area and Resources 21- 6 © Copyright 2013 Xilinx

User control of Resources

– The resource directive gives user control over the specific resource (core) used to implement

operations

• Select the scope & right-click to apply the directive

• Select “core” for a list of resources

• Specify the variable

Multiple line coding caveat

– If multiple operations occur on a single line

– A temporary variable is required to isolate the specific operation

Additional Control: Specify Resources

In this example, “data” is implemented with a
2-stage pipelined multiplier

a=b*c*d

data= c*d;

a = b*data;

Improving Area and Resources 21- 7 © Copyright 2013 Xilinx

Optimizing Resource Utilization

Reducing Area Usage

Summary

Outline

Improving Area and Resources 21- 8 © Copyright 2013 Xilinx

Control the number of elements

– Directives can be used to control scheduling and binding

Control the design hierarchy

– Like RTL synthesis, removing the hierarchy can help optimize across function and loop boundaries

• Functions can be inlined

• Loops can be unrolled

Array implementation

– Vivado HLS provides directives for combining memories

• Allowing a single large memory to be used instead of multiple smaller memories

Bit-width optimization

– Arbitrary precision types ensure correct operator sizing

Improving Area/Resource Utilization

Improving Area and Resources 21- 9 © Copyright 2013 Xilinx

Each function is translated into an RTL block

– Verilog module, VHDL entity

Review: Functions & RTL Hierarchy

void A() { ..body A..}

void B() { ..body B..}
void C() {

B();
}

void D() {

B();

}

void foo_top() {
A(…);

C(…);

D(…)

}

foo_top

A

C
B

D
B

Source Code RTL hierarchy

my_code.c

Functions can be inlined – the hierarchy removed & the

function dissolved into the surrounding function

21- 10

Improving Area and Resources 21- 10 © Copyright 2013 Xilinx

Vivado HLS performs some inlining automatically

– This is performed on small logic functions if Vivado HLS determines area or performance will benefit

User Control

– Functions can be specifically inlined

• The function itself is inlined

– Optionally recursively down the hierarchy

– Optionally everything within a region can be inlined

• Everything named region or a function or a loop

– Optionally inlining can be explicitly prevented

• Turn inlining off

Inlining functions allows for greater optimization

– Like ungrouping RTL hierarchies: optimization across boundaries

– Like ungrouping RTL hierarchies it can result in lots of operations & impact run time

Controlling Inlining

21- 11

Improving Area and Resources 21- 11 © Copyright 2013 Xilinx

sumsub_func

sumsub_func

shift_func

AA

+ -

BB

+ -

>>2>>1

add_sub_pass

Inlining can be used to remove function hierarchy

Function Inlining

int sumsub_func (int *in1, int *in2, int *outSum, int *outSub) {
*outSum = *in1 + *in2;
*outSub = *in1 - *in2;
}

int shift_func (int *in1, int *in2, int *outA, int *outB) {
*outA = *in1 >> 1;
*outB = *in2 >> 2;

}

void add_sub_pass(int A, int B, int *C, int *D) {
int apb, amb;
int a2, b2;

sumsub_func(&A,&B,&apb,&amb);
sumsub_func(&apb,&amb,&a2,&b2);
shift_func(&a2,&b2,C,D);

}

add_sub_pass

AA BB

AA B>>1B>>1

Zero Area

Inlining allows optimization to be performed

across function hierarchies

No Inlining Inlining

2 Adders

2 Subtractors

A+BA+B A-BA-B

Like RTL ungrouping, too much inlining can

create a lot of logic and slow runtime

A+B

A-B
2A

A+B

A-B
2A

A+B

A-B
2B

A+B

A-B
2B

+ -

AA B>>1B>>1

21- 12

Improving Area and Resources 21- 12 © Copyright 2013 Xilinx

Inline and Allocation: Shape the Hierarchy

One RTL block is reused for both

instances of function foo

Easy to Share

Function foo is not within the immediate

scope of foo_top

Cannot be shared

Inlining brings foo into function foo_top

where it can be shared

Controlling Sharing

21- 13

Improving Area and Resources 21- 13 © Copyright 2013 Xilinx

By default, loops are rolled

– Each C loop iteration � Implemented in the same state

– Each C loop iteration � Implemented with same resources

For Area optimization

Loops

void foo_top (…) {

...

Add: for (i=3;i>=0;i--) {

b = a[i] + b;

...

}

foo_top

+

Synthesis

N

a[N]
b

Keeping loops rolled maximizes sharing across loop iterations: each iteration of the

loop uses the same hardware resources

21- 14

Improving Area and Resources 21- 14 © Copyright 2013 Xilinx

Loop merging & flattening can remove the redundant computation among multiple

(related) loops

– Improving area (and sometimes performance)

Allows Vivado HLS to perform optimizations

– Optimization cannot occur across loop boundaries

Loop Merging & Flattening

My_Region: {

#pragma HLS merge loop

for (i = 0; i < N; ++i)

A[i] = B[i] + 1;

for (i = 0; i < N; ++i)

C[i] = A[i] / 2;

}

for (i = 0; i < N; ++i) {

A[i] = B[i] + 1;

C[i] = A[i] / 2;

}
Merge

Removes A[i], any address logic and any potential

memory accesses

for (i = 0; i < N; ++i)

C[i] = (B[i] + 1) / 2;

Effective code after compiler

transformation

21- 15

Improving Area and Resources 21- 15 © Copyright 2013 Xilinx

The arrays in the C model may not be ideal for the available RAMs
– The code may have many small arrays

– The array may not utilize the RAMs very well

Array Mapping
– Mapping combines smaller arrays into larger arrays

• Allows arrays to be reconfigured without code edits

– Specify the array variable to be mapped

– Give all arrays to be combined the same instance name

Vivado HLS provides options as to the type of mapping
– Combine the arrays without impacting performance

• Vertical & Horizontal mapping

Global Arrays
– When a global array is mapped all arrays involved are promoted to global

– When arrays are in different functions, the target becomes global

Arrays which are function arguments
– All must be part of the same function interface

Mapping Arrays

21- 16

Improving Area and Resources 21- 16 © Copyright 2013 Xilinx

Horizontal Mapping

– Combines multiple arrays into longer (horizontal) array

– Optionally allows the arrays to be offset

• The default is to concatenate after the last element

• The first array specified (in GUI or Tcl script) starts at location zero

Horizontal Mapping

21- 17

Improving Area and Resources 21- 17 © Copyright 2013 Xilinx

Vertical Mapping

– Combines multiple arrays in to an array with more bits

– The first array specified (in Tcl or GUI) starts at the LSB

Vertical Mapping for performance

– Creates RAMs with wide words � Parallel accesses

Vertical Mapping

21- 18

Improving Area and Resources 21- 18 © Copyright 2013 Xilinx

C and C++ have standard types created on the 8-bit boundary

– char (8-bit), short (16-bit), int (32-bit), long long (64-bit)

• Also provides stdint.h (for C), and stdint.h and cstdint (for C++)

• Types: int8_t, uint16_t, uint32_t, int_64_t etc.

– They result in hardware which is not bit-accurate and can give sub-standard QoR

Vivado HLS provides bit-accurate types in both C and C++

– Plus SystemC types can be used in C++

– Allow any arbitrary bit-width to be specified

– Will simulate with bit-accuracy

Arbitrary Precision Integers

21- 19

Improving Area and Resources 21- 19 © Copyright 2013 Xilinx

Code using native C int type

However, if the inputs will only have a max range of 8-bit

– Arbitrary precision data-types should be used

– It will result in smaller & faster hardware with full precision

Why are Arbitrary Precision types Needed?

21- 20

Improving Area and Resources 21- 20 © Copyright 2013 Xilinx

Optimizing Resource Utilization

Reducing Area Usage

Summary

Outline

Improving Area and Resources 21- 21 © Copyright 2013 Xilinx

Resource utilization can be reduced using allocation and binding controls

Arbitrary precision data types help controlling both the area and resource utilization

The design structure can be controlled by

– Inlining functions: direct impact on RTL hierarchy & optimization possibilities

– Loops: direct impact on reuse of resources

– Arrays: direct impact on the RAM

Major area optimization techniques

– Minimize bit widths

– Map smaller arrays into larger arrays

• Make better use of existing RAMs

– Control loop hierarchy

– Control function call hierarchy

– Control the number of operators and cores

Summary

Improving Area and Resources 21- 22 © Copyright 2013 Xilinx

