
Lab Workbook Vivado HLS Design Flow Lab

 www.xilinx.com/university ZedBoard 1-1
 xup@xilinx.com
 © copyright 2014 Xilinx

Vivado HLS Design Flow Lab

Introduction

This lab provides a basic introduction to high-level synthesis using the Vivado HLS tool flow. You will use
Vivado HLS in GUI mode to create a project. You will simulate, synthesize, and implement the provided
design.

Objectives

After completing this lab, you will be able to:

• Create a new project using Vivado HLS GUI
• Simulate a design

• Synthesize a design

• Implement a design

• Perform design analysis using the Analysis capability of Vivado HLS
• Analyze simulator output using Vivado and XSim simulator

Procedure

This lab is separated into steps that consist of general overview statements that provide information on
the detailed instructions that follow. Follow these detailed instructions to progress through the lab.

This lab comprises 8 primary steps: You will create a new project in Vivado HLS, run simulation, run
debug, synthesize the design, open an analysis perspective, run SystemC and RTL co-simulation, view
simulation results using Vivado and XSim, and export and implement the design in Vivado HLS.

General Flow for this Lab

Step 1:
Creating a

New
Project

Step 2:
Run C

Simulation

Step 3:
Run

Debugger

Step 4:
Synthesize
the design

Step 5:
Analyze using

Analysis
Perspective

Step 6:
Run C/RTL

Co-Simulation

Step 7:
Viewing

Simulation
Results in

Vivado

Step 8:

Export RTL
and

Implement

Vivado HLS Design Flow Lab Lab Workbook

ZedBoard 1-2 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2014 Xilinx

Create a New Project Step 1

1-1. Create a new project in Vivado HLS targeting Zynq xc7z020clg484-1.

1-1-1. Launch Vivado HLS: Select Start > All Programs > Xilinx Design Tools > Vivado 2014.2 >
Vivado HLS > Vivado HLS 2014.2

A Getting Started GUI will appear.

Figure 1. Getting Started view of Vivado-HLS

1-1-2. In the Getting Started GUI, click on Create New Project. The New Vivado HLS Project wizard
opens.

1-1-3. Click the Browse… button of the Location field and browse to c:\xup\hls\labs\lab1 and then click
OK.

1-1-4. For Project Name, type matrixmul.prj

Lab Workbook Vivado HLS Design Flow Lab

 www.xilinx.com/university ZedBoard 1-3
 xup@xilinx.com
 © copyright 2014 Xilinx

Figure 2. New Vivado HLS Project wizard

1-1-5. Click Next.

1-1-6. In the Add/Remove Files window, type matrixmul as the Top Function name (the provided
source file contains the function, to be synthesized, called matrixmul).

1-1-7. Click the Add Files… button, select matrixmul1.cpp file from the c:\xup\hls\labs\lab1 folder, and
then click Open.

1-1-8. Click Next.

1-1-9. In the Add/Remove Files for the testbench, click the Add Files… button, select
matrixmul_test.cpp file from the c:\xup\hls\labs\lab1 folder and click Open.

1-1-10. Select the matrixmul1_test.cpp in the files list window and click the Edit CFLAG… button, type
-DHW_COSIM, and click OK.

1-1-11. Click Next.

1-1-12. In the Solution Configuration page, leave Solution Name field as solution1 and clock period as
10. Leave Uncertainty field blank as it will take 1.25 as the default value.

1-1-13. In the Device Selection Dialog page, select Parts Specify field, and select the following filters to
select the xc7z020clg484-1 part, and click OK:

� Family: Zynq

� Sub-Family: Zynq

� Package: clg484

� Speed Grade: –1

Vivado HLS Design Flow Lab Lab Workbook

ZedBoard 1-4 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2014 Xilinx

Figure 3. Using Parts Specify option in Part Selection Dialog

You can also select the Boards specify option and select one of the listed board if the desired
target board is listed.

Figure 4. Using Boards Specify option in Part Selection Dialog

1-1-14. Click Finish.

Lab Workbook Vivado HLS Design Flow Lab

 www.xilinx.com/university ZedBoard 1-5
 xup@xilinx.com
 © copyright 2014 Xilinx

You will see the created project in the Explorer view. Expand various sub-folders to see the
entries under each sub-folder.

Figure 5. Explorer Window

1-1-15. Double-click on the matrixmul.cpp under the source folder to open its content in the information
pane.

Figure 6. The Design under consideration

It can be seen that the design is a matrix multiplication implementation, consisting of three nested
loops. The Product loop is the inner most loop performing the actual Matrix elements product and
sum. The Col loop is the outer-loop which feeds the next column element data with the passed
row element data to the Product loop. Finally, Row is the outer-most loop. The res[i][j]=0 (line
79) resets the result every time a new row element is passed and new column element is used.

Vivado HLS Design Flow Lab Lab Workbook

ZedBoard 1-6 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2014 Xilinx

Run C Simulation Step 2

2-1. Run C simulation to view the expected output.

2-1-1. Select Project > Run C Simulation or click on from the tools bar buttons, and Click OK in
the C Simulation Dialog window.

2-1-2. The files will be compiled and you will see the output in the Console window.

Figure 7. Program output

2-1-3. Double-click on matrixmul_test.cpp under testbench folder in the Explorer to see the content.

You should see two input matrices initialized with some values and then the code executes the
algorithm. If HW_COSIM is defined then the matrixmul function is called and compares the output
of the computed result with the one returned from the called function, and prints Test passed if
the results match.

If HW_COSIM had not been defined then it will simply output the computed result and not call the
matrixmul1 function.

Run Debugger Step 3

3-1. Run the application in debugger mode and understand the behavior of the
program.

3-1-1. Select Project > Run C Simulation or click on from the tools bar buttons. Select the Launch
Debugger option and click OK.

The application will be compiled with –g option to include the debugging information, the compiled
application will be invoked, and the debug perspective will be opened automatically.

Lab Workbook Vivado HLS Design Flow Lab

 www.xilinx.com/university ZedBoard 1-7
 xup@xilinx.com
 © copyright 2014 Xilinx

3-1-2. The Debug perspective will show the matrixmul1_test.cpp in the source view, argc and argv
variables defined in the Variables view, Outline view showing the objects which are in the current
scope, thread created and the program suspended at the main() function entry point.

Figure 8. A Debug perspective

3-1-3. Scroll-down in the source view, and double-click in the blue margin at line 105 where it is about to
output “{“ in the output console window. This will set a break-point at line 105. .

The breakpoint is marked with a blue circle, and a tick

3-1-4. Similarly, set a breakpoint at line 101 on the matrixmul() function

3-1-5. Using the Step Over (F6) button () several times, observe the execution progress. Do it for
about 19 times and observe the variable values as well as computed software result.

Vivado HLS Design Flow Lab Lab Workbook

ZedBoard 1-8 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2014 Xilinx

Figure 9. Debugger’s intermediate output view

3-1-6. Now click the Resume () button to complete the software computation and stop at line 101.

3-1-7. Observe the following computed software result in the variables view.

Figure 10. Software computed result

Lab Workbook Vivado HLS Design Flow Lab

 www.xilinx.com/university ZedBoard 1-9
 xup@xilinx.com
 © copyright 2014 Xilinx

3-1-8. Click on the Step Into (F5) button () to traverse into the matrixmul module, the one that we
will synthesize, and observe that the execution is paused on line 75 of the module.

3-1-9. Using the Step Over (F6) several times, observe the computed results. Once satisfied, you can
use the Step Return (F7) button to return from the function.

3-1-10. The program execution will suspend at line 105 as we had set a breakpoint. Observe the
software and hardware (function) computed results in Variables view.

Figure 11. Computed results

3-1-11. Set a breakpoint on line 134 (return err_cnt;), and click on the Resume button.

The execution will continue until the breakpoint is encountered. The console window will show
the results as seen earlier (Figure 7).

3-1-12. Press the Resume button or Terminate button to finish the debugging session.

Synthesize the Design Step 4

4-1. Switch to Synthesis view and synthesize the design with the defaults. View
the synthesis results and answer the question listed in the detailed section
of this step.

4-1-1. Switch to the Synthesis view by clicking on the tools bar.

Vivado HLS Design Flow Lab Lab Workbook

ZedBoard 1-10 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2014 Xilinx

4-1-2. Select Solution > Run C Synthesis > Active Solution or click on the button to start the
synthesis process.

4-1-3. When synthesis is completed, the Synthesis Results will be displayed along with the Outline pane.
Using the Outline pane, one can navigate to any part of the report with a simple click.

 Figure
12. Report view after synthesis is completed

4-1-4. If you expand solution1 in Explorer, several generated files including report files will become
accessible.

Lab Workbook Vivado HLS Design Flow Lab

 www.xilinx.com/university ZedBoard 1-11
 xup@xilinx.com
 © copyright 2014 Xilinx

Figure 13. Explorer view after the synthesis process

Note that when the syn folder under the Solution1 folder is expanded in the Explorer view, it will
show report, systemC, verilog, and vhdl sub-folders under which report files, and generated
source (vhdl, verilog, header, and cpp) files. By double-clicking any of these entries will open the
corresponding file in the information pane.

Also note that if the target design has hierarchical functions, reports corresponding to lower-level
functions are also created.

4-1-5. The Synthesis Report shows the performance and resource estimates as well as estimated
latency in the design.

4-1-6. Using scroll bar on the right, scroll down into the report and answer the following question.

Question 1

Estimated clock period:
Worst case latency:
Number of DSP48E used:
Number of FFs used:
Number of LUTs used:

4-1-7. The report also shows the top-level interface signals generated by the tools.

Vivado HLS Design Flow Lab Lab Workbook

ZedBoard 1-12 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2014 Xilinx

Figure 14. Generated interface signals

You can see ap_clk, ap_rst and ap_* control signals are automatically added to every design by
default. The ap_start, ap_done, ap_idle, and ap_ready are top-level signals used as
handshaking signals to indicate when the design is able to accept next computation command
(ap_ready), when the next computation is started (ap_start), and when the computation is
completed (ap_done). Other signals are generated based on the design interface itself.

Analyze using Analysis Perspective Step 5

5-1. Switch to the Analysis Perspective and understand the design behavior.

5-1-1. Select Solution > Open Analysis Perspective or click on ()to
open the analysis viewer.

The Analysis perspective consists of 5 panes as shown below. Note that the module and loops
hierarchies are displayed unexpanded by default.

The Module Hierarchy pane shows both the performance and area information for the entire
design and can be used to navigate through the hierarchy. The Performance Profile pane is
visible and shows the performance details for this level of hierarchy. The information in these two
panes is similar to the information reviewed earlier in the synthesis report.

The Performance view is also shown in the right-hand side pane. This view shows how the
operations in this particular block are scheduled into clock cycles.

o The left-hand column lists the resources

o The top row lists the control states (c0 to c5) in the design. Control states are the internal
states used by High-Level Synthesis to schedule operations into clock cycles. There is a

Lab Workbook Vivado HLS Design Flow Lab

 www.xilinx.com/university ZedBoard 1-13
 xup@xilinx.com
 © copyright 2014 Xilinx

close correlation between the control states and the final states in the RTL Finite State
Machine(FSM) but there is no one-to-one mapping

Figure 15. Analysis perspective

5-1-2. Click on loop Row to expand, and then click on sub-loops Col and Product to fully expand the
loop hierarchy.

Figure 16. Performance matrix showing top-level Row operation

Vivado HLS Design Flow Lab Lab Workbook

ZedBoard 1-14 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2014 Xilinx

From this we can see that in the first state (C1) of the Row the loop exit condition is checked and
there is an add operation performed. This addition is likely the counter to count the loop iterations,
and we can confirm this.

The operations resulting from the loops are colored yellow, the standard operations are colored
purple, and sub-blocks will be colored green (in our case we don’t have any lower-level functions).

5-1-3. Select the grey block for the adder in state C1, right-click and select Goto Source.

The source code pane will be opened, highlighting line 75 where the Row loop index is being
tested and incremented. In the next state (C2) it starts to execute the Col loop.

Figure 17. Cross probing into the source file

5-1-4. In C2, click on the operations (e.g. p_addr7) in the Col loop to see the source code highlighting
(line 79) update.

5-1-5. Expand the Performance Profile hierarchy and note iteration latencies, Trip counts, and overall
latencies for each of the nested loops.

Figure 18. The Performance Profile output

The number of iterations can also be noted by holding the mouse over the loop in the
Performance view (a dialog box shows the loop statistics).

Lab Workbook Vivado HLS Design Flow Lab

 www.xilinx.com/university ZedBoard 1-15
 xup@xilinx.com
 © copyright 2014 Xilinx

Figure 19. Loop information

Note that the initiation interval does not have a number as this loop is not pipelined.

5-1-6. Click next to the matrixmul entry in the Module Hierarchy and observe that the entry is not
expanded, since there are no lower-level functions defined in the design.

5-1-7. Select the Resource Profile tab and observe various resources and where they have been used.
You can expand Expressions and Registers sections to see how the resources are being used by
which operations.

Figure 20. The Resource Profile tab view

5-1-8. In the Performance Matrix tab, select the Resource tab (at the bottom of the page), and expand
Expressions, I/O Ports, and Memory Ports entries to view the type of operations, resources
used, and in which state they are being used.

Vivado HLS Design Flow Lab Lab Workbook

ZedBoard 1-16 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2014 Xilinx

Figure 21. The Resource tab

5-1-9. Click on the Synthesis tool bar button to switch back to the Synthesis view.

Run C/RTL Co-simulation Step 6

6-1. Run the C/RTL Co-simulation with the default settings of SystemC. Verify
that the simulation passes.

6-1-1. Select Solution > Run C/RTL Cosimulation or if you are in the synthesis view, click on the
toolbar button to open the dialog box so the desired simulations can be selected and run.

A C/RTL Co-simulation Dialog box will open. The default option for RTL Co-simulation is to
perform the simulation using the SystemC RTL. This allows the simulation to be performed using
the built-in C compiler. To perform the verification using Verilog and/or VHDL, you can select the
HDL and choose the simulator from the drop-down menu or let the tools use the first simulator
that appears in the PATH variable.

Lab Workbook Vivado HLS Design Flow Lab

 www.xilinx.com/university ZedBoard 1-17
 xup@xilinx.com
 © copyright 2014 Xilinx

Figure 22. A C/RTL Co-simulation Dialog

6-1-2. Click OK to run the SystemC simulation.

The C/RTL Co-simulation will run, generating and compiling several files, and then simulating the
design. It goes through three stages.

• First, the C test bench is executed to generate input stimuli for the RTL design

• Second, an RTL test bench with newly generated input stimuli is created and the RTL
simulation is then performed

• Finally, the output from the RTL is re-applied to the C test bench to check the results

Vivado HLS Design Flow Lab Lab Workbook

ZedBoard 1-18 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2014 Xilinx

In the console window you can see the progress and also a message that the test is passed.
This eliminates writing a separate testbench for the synthesized design.

Figure 23. Console view showing simulation progress

Lab Workbook Vivado HLS Design Flow Lab

 www.xilinx.com/university ZedBoard 1-19
 xup@xilinx.com
 © copyright 2014 Xilinx

6-1-3. Once the simulation verification is completed, the simulation report tab will open showing the
results. The report indicates if the simulation passed or failed. In addition, the report indicates the
measured latency and interval.

Since we have selected only SystemC, the result shows the latencies and interval (initiation)
which indicates after how many clock cycles later the next input can be provided. Since the
design is not pipelined, it will be latency+1 clock cycles.

Figure 24. Co-simulation results

Viewing Simulation Results in Vivado Step 7

7-1. Run Verilog simulation with Dump Trace option selected.

7-1-1. Select Solution > Run C/RTL Cosimulation or click on the button in the Synthesis view to
open the dialog box so the desired simulations can be run.

7-1-2. Click on the Verilog RTL Selection option, leaving Verilog/VHDL Simulator Section option to Auto.

Optionally, you can click on the drop-down button and select the desired simulator from the
available list of XSim, ISim, ModelSim, and Riviera.

7-1-3. Select All for the Dump Trace option and click OK.

Vivado HLS Design Flow Lab Lab Workbook

ZedBoard 1-20 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2014 Xilinx

Figure 25. Setting up for Verilog simulation and dump trace

When RTL verification completes the co-simulation report automatically opens showing the
Verilog simulation has passed (and the measured latency and interval). In addition, because the
Dump Trace option was used and Verilog was selected, two trace files entries can be seen in the
Verilog simulation directory

Lab Workbook Vivado HLS Design Flow Lab

 www.xilinx.com/university ZedBoard 1-21
 xup@xilinx.com
 © copyright 2014 Xilinx

Figure 26. Explorer view after the Verilog RTL co-simulation run

The Cosimulation report shows the test was passed for Verilog along with latency and Interval
results. It also shows the SystemC results of the previous run.

Figure 27. Cosimulation report

7-2. Start Vivado 2014.2 and enter Tcl commands to open and view the dumped
traces.

7-2-1. Select Start > All Programs > Xilinx Design Tools > Vivado 2014.2 > Vivado 2014.2 to start
the Vivado Design Suite program.

Vivado HLS Design Flow Lab Lab Workbook

ZedBoard 1-22 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2014 Xilinx

7-2-2. In the Vivado Tcl console, enter the following commands one by one:

cd c:/xup/hls/labs/lab1/matrixmul.prj/solution1/sim/Verilog
current_fileset
open_wave_database matrixmul.wdb
open_wave_config matrixmul.wcfg

The above commands will load the project, simulation results, and open the waveform.

7-2-3. In the waveform window, click on the full zoom tool button () to see the entire simulation of
one iteration.

7-2-4. Select a_address0 in the waveform window, right-click and select Radix > Unsigned Decimal.
Similarly, do the same for b_address0 and res_address0 signals.

7-2-5. Similarly, set the a_q0, b_q0, and res_d0 radix to Signed Decimal.

7-2-6. Scroll the waveform little, so you can view the main interface signals (ap_*).

Figure 28. Full waveform showing iteration worth simulation

Simulation run was for 1205 ns. Note that as soon as ap_start is asserted, ap_idle has been de-
asserted (at 135 ns) indicating that the design is in computation mode. The ap_idle signal
remains de-asserted until ap_done is asserted at 1195 ns, indicating completion of the process.
This indicates 106 clock cycles latency (1195 -135 => 1060 ns).

7-2-7. Using Zoom In button, view area of 165 ns and 550 ns.

Lab Workbook Vivado HLS Design Flow Lab

 www.xilinx.com/university ZedBoard 1-23
 xup@xilinx.com
 © copyright 2014 Xilinx

Figure 29. Zoomed view

Observe that the design expects element data by providing a_address0, a_ceo, b_address0,
b_ceo signals and outputs result using res_d0, res_we0, and res_ce0.

7-2-8. View various part of the simulation and try to understand how the design works.

7-2-9. When done, close Vivado by selecting File > Exit. Click OK if prompted, and then No to close the
program without saving.

Export RTL and Implement Step 8

8-1. In Vivado HLS, export the design, selecting VHDL as a language, and run
the implementation by selecting Evaluate option.

8-1-1. In Vivado-HLS, select Solution > Export RTL or click on the button to open the dialog box so
the desired implementation can be run.

An Export RTL Dialog box will open.

Figure 30. A Export RTL Dialog box

Vivado HLS Design Flow Lab Lab Workbook

ZedBoard 1-24 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2014 Xilinx

With default settings (shown above), the IP packaging process will run and create a package for
the Vivado IP Catalog. Other options, available from the drop-down menu, are to create IP
packages for System Generator for DSP/System Generator for DSP using ISE, create a pcore for
Xilinx Platform Studio, or create a Synthesized checkpoint.

8-1-2. Click on the drop-down menu of the Options field, and select VHDL and click on the Evaluate
check box as the preferred language and to run the implementation tool.

8-1-3. Click OK and the implementation run will begin.

You can observe the progress in the Vivado HLS Console window. It goes through several
phases:
o Exporting RTL as an IP in the IP-XACT format
o RTL evaluation, since we selected Evaluate option

o Goes through Synthesis
o Goes through Placement and Routing

Figure 31. Console view

Lab Workbook Vivado HLS Design Flow Lab

 www.xilinx.com/university ZedBoard 1-25
 xup@xilinx.com
 © copyright 2014 Xilinx

When the run is completed the implementation report will be displayed in the information pane.

Figure 32. Implementation results in Vivado HLS

Observe that the timing constraint was met, the achieved period (6.176 ns), and the type and
amount of resources used.

8-1-4. Collapse the Explorer view and observe that impl folder is created under which ip, report, Verilog,
and vhdl sub-folders are created.

Figure 33. Explorer view after the RTL Export run

8-1-5. Expand the Verilog and vhdl sub-folders and observe that the Verilog sub-folder only has the rtl
file whereas vhdl sub-folder has several files and sub-folders as the synthesis and
implementation runs were made for it.

It includes project.xpr file (the Vivado project file), matrixmul1.xdc file (timing constraint file),
project.runs folder (which includes synth_1 and impl_1 sub-folders created by the synthesis and
implementation runs) among others.

Vivado HLS Design Flow Lab Lab Workbook

ZedBoard 1-26 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2014 Xilinx

Figure 34. The implementation directory

8-1-6. Expand the ip folder and observe the IP packaged as a zip file
(xilinx_com_hls_matrixmul1_1_0.zip), ready for adding to the Vivado IP catalog.

Lab Workbook Vivado HLS Design Flow Lab

 www.xilinx.com/university ZedBoard 1-27
 xup@xilinx.com
 © copyright 2014 Xilinx

Figure 35. The ip folder content

8-1-7. Close Vivado HLS by selecting File > Exit.

Conclusion

In this lab, you completed the major steps of the high-level synthesis design flow using Vivado HLS. You
created a project, adding source files, synthesized the design, simulated the design, and implemented the
design. You also learned how to use the Analysis capability to understand the scheduling and binding.

Answers

1. Answer the following questions:

Estimated clock period: 6.38 ns

Worst case latency: 107 clock cycles

Number of DSP48E used: 1

Number of FFs used: 59

Number of LUTs used: 65

Lab Workbook Improving Performance Lab

www.xilinx.com/university ZedBoard 2-1
xup@xilinx.com

© Copyright 2014 Xilinx

Improving Performance Lab

Introduction

This lab introduces various techniques and directives which can be used in Vivado HLS to improve
design performance. The design under consideration accepts an image in a (custom) RGB format,
converts it to the Y’UV color space, applies a filter to the Y’UV image and converts it back to RGB.

Objectives

After completing this lab, you will be able to:

• Add directives in your design
• Understand the effect of INLINE directive

• Improve performance using PIPELINE directive

• Distinguish between DATAFLOW directive and Configuration Command functionality

Procedure

This lab is separated into steps that consist of general overview statements that provide information on
the detailed instructions that follow. Follow these detailed instructions to progress through the lab.

This lab comprises 6 primary steps: You will create a new project using Vivado HLS command prompt,
analyze the created project and generated solution, turn off inlining and apply TRIPCOUNT directive,
apply PIPELINE directive, apply DATAFLOW directive and command configuration, and finally export and
implement the design.

General Flow for this Lab

Step 1:

Create a
Project

using CLI

Step 2:

Analyze
Project and

Results

Step 3:

Apply
TRIPCOUNT

Directive

Step 4:

Apply
PIPELINE
Directive

Step 5:

Apply
DATAFLOW

Directive

Step 6:

Export &
Implement
the Design

Improving Performance Lab Lab Workbook

ZedBoard 2-2 www.xilinx.com/university
xup@xilinx.com

© Copyright 2014 Xilinx

Create a Vivado HLS Project from Command Line Step 1

1-1. Validate your design using Vivado HLS command line window. Create a
new Vivado HLS project from the command line.

1-1-1. Launch Vivado HLS: Select Start > All Programs > Xilinx Design Tools > Vivado 2014.2 >
Vivado HLS > Vivado HLS 2014.2 Command Prompt.

1-1-2. In the Vivado HLS Command Prompt, change directory to c:\xup\hls\labs\lab2.

1-1-3. A self-checking program (yuv_filter_test.c) is provided. Using that we can validate the design. A
Makefile is also provided. Using the Makefile, the necessary source files can be compiled and
the compiled program can be executed. In the Vivado HLS Command Prompt, type make to
compile and execute the program.

Figure 1. Validating the design

Note that the source files (yuv_filter.c, yuv_filter_test.c, and image_aux.c are compiled, then
yuv_filter executable program was created, and then it was executed. The program tests the
design and outputs Test Passed message.

1-1-4. A Vivado HLS tcl script file (yuv_filter.tcl) is provided and can be used to create a Vivado HLS
project. Type vivado_hls –f yuv_filter.tcl in the Vivado HLS Command Prompt window to
create the project.

The project will be created and Vivado HLS.log file will be generated.

1-1-5. Open the vivado_hls.log file from c:\xup\hls\labs\lab2 using any text editor and observe the
following sections:

Lab Workbook Improving Performance Lab

www.xilinx.com/university ZedBoard 2-3
xup@xilinx.com

© Copyright 2014 Xilinx

o Creating directory and project called yuv_filter.prj within it, adding design files to the project,
setting solution name as solution1, setting target device (Zynq-z020), setting desired clock
period of 10 ns, and importing the design and testbench files (Figure 2).

o Synthesizing (Generating) the design which involves scheduling and binding of each
functions and sub-function (Figure 3).

o Generating RTL of each function and sub-function in SystemC, Verilog, and VHDL languages
(Figure 4).

Figure 2. Creating project and setting up parameters

Improving Performance Lab Lab Workbook

ZedBoard 2-4 www.xilinx.com/university
xup@xilinx.com

© Copyright 2014 Xilinx

Figure 3. Synthesizing (Generating) the design

Lab Workbook Improving Performance Lab

www.xilinx.com/university ZedBoard 2-5
xup@xilinx.com

© Copyright 2014 Xilinx

Figure 4. Generating RTL

1-1-6. Open the created project (in GUI mode) from the Vivado HLS Command Prompt window, by
typing vivado_hls –p yuv_filter.prj.

The Vivado HLS will open in GUI mode and the project will be opened.

Analyze the Created Project and Results Step 2

2-1. Open the source file and note that three functions are used. Look at the
results and observe that the latencies don’t have definite answer
(represented by ?).

2-1-1. In Vivado HLS GUI, expand the source folder in the Explorer view and double-click yuv_filter.c
to view the content.

o The design is implemented in 3 functions: rgb2yuv, yuv_scale and yuv2rgb.

Improving Performance Lab Lab Workbook

ZedBoard 2-6 www.xilinx.com/university
xup@xilinx.com

© Copyright 2014 Xilinx

o Each of these filter functions iterates over the entire source image (which has maximum
dimensions specified in image_aux.h), requiring a single source pixel to produce a pixel in
the result image.

o The scale function simply applies individual scale factors, supplied as top-level arguments to
the Y’UV components.

o Notice that most of the variables are of user-defined (typedef) and aggregate (e.g. structure,
array) types.

o Also notice that the original source used malloc() to dynamically allocate storage for the
internal image buffers. While appropriate for such large data structures in software, malloc()
is not synthesizable and is not supported by Vivado HLS.

o A viable workaround is conditionally compiled into the code, leveraging the __SYNTHESIS__
macro. Vivado HLS automatically defines the __SYNTHESIS__ macro when reading any code.
This ensure the original malloc() code is used outside of synthesis but Vivado HLS will use
the workaround when synthesizing.

2-1-2. Expand the syn > report folder in the Explorer view and double-click yuv_filter_csynh.rpt entry
to open the synthesis report.

2-1-3. Each of the loops in this design has variable bounds – the width and height are defined by
members of input type image_t. When variables bounds are present on loops the total latency of
the loops cannot be determined: this impacts the ability to perform analysis using reports. Hence,
“?” is reported for various latencies.

Figure 5. Latency computation

Lab Workbook Improving Performance Lab

www.xilinx.com/university ZedBoard 2-7
xup@xilinx.com

© Copyright 2014 Xilinx

Apply TRIPCOUNT Pragma Step 3

3-1. Open the source file and uncomment pragma lines, re-synthesize, and
observe the resources used as well as estimated latencies. Answer the
questions listed in the detailed section of this step.

3-1-1. To assist in providing loop-latency estimates, Vivado HLS provides a TRIPCOUNT directive
which allows limits on the variables bounds to be specified by the user. In this design, such
directives have been embedded in the source code, in the form of #pragma statements.

3-1-2. Uncomment lines (50, 53, 90, 93, 130, 133) to bring the #pragma statements into the design to
define the variable bounds.

3-1-3. Synthesize the design by selecting Solution > Run C Synthesis > Active Solution. View the
synthesis report when the process is completed.

Figure 6. Latency computation after applying TRIPCOUNT pragma

3-1-4. Looking at the report, and answer the following question.

Question 1

Estimated clock period:

Worst case latency:

Number of DSP48E used:

Number of BRAMs used:

Number of FFs used:

Number of LUTs used:

3-1-5. Scroll the Console window and note that yuv_scale function is automatically inline into the
yuv_filter function.

Improving Performance Lab Lab Workbook

ZedBoard 2-8 www.xilinx.com/university
xup@xilinx.com

© Copyright 2014 Xilinx

Figure 7. Vivado HLS automatically inlining function

3-1-6. Observe that there are three entries – rgb2yuv.rpt, yuv_filter.rpt, and yuv2rgb.rpt under the syn
report folder in the Explorer view. There is no entry for yuv_scale.rpt since the function was
inlined into the yuv_filter function.

You can access lower level module’s report by either traversing down in the top-level report under
components (under Area Estimates > Details > Component) or from the reports container in the
project explorer.

3-1-7. Expand the Summary of loop latency and note the latency and trip count numbers for the
yuv_scale function. Note that the YUV_SCALE_LOOP_Y loop latency is 4X the specified
TRIPCOUNT, implying that 4 cycles are used for each of the iteration of the loop.

 Figure 8. Loop latency

3-1-8. You can verify this by opening an analysis perspective view, expanding the
YUV_SCALE_LOOP_X entry, and then expanding the YUV_SCALE_LOOP_Y entry.

Lab Workbook Improving Performance Lab

www.xilinx.com/university ZedBoard 2-9
xup@xilinx.com

© Copyright 2014 Xilinx

Figure 9. Design analysis view of the YUV_SCALE_LOOP_Y loop

3-1-9. In the report tab, expand Detail > Instance section of the Utilization Estimates and click on the
grp_rgb2yuv_fu_246 (rgb2yuv) entry to open the report.

3-1-10. Answer the following question pertaining to rgb2yuv function.

Question 2

Estimated clock period:

Worst case latency:

Number of DSP48E used:

Number of FFs used:

Number of LUTs used:

3-1-11. Similarly, open the yuv2rgb report.

3-1-12. Answer the following question pertaining to yuv2rgb function.

Improving Performance Lab Lab Workbook

ZedBoard 2-10 www.xilinx.com/university
xup@xilinx.com

© Copyright 2014 Xilinx

Question 3

Estimated clock period:

Worst case latency:

Number of DSP48E used:

Number of FFs used:

Number of LUTs used:

3-1-13. For the rgb2yuv function the worst case latency is reported as 12291841 clock cycles. The
reported latency can be estimated as follows.

o RGB2YUV_LOOP_Y total loop latency = 5 x 1280 = 6400 cycles

o 1 entry and 1 exit clock for loop RGB2YUV_LOOP_Y = 6402 cycles

o RGB2YUV_LOOP_X loop body latency = 6402 cycles

o RGB2YUV_LOOP_X total loop latency = 6402 x 1920 =12291840 cycles

o 1 entry clock for RGB2YUV_LOOP_X = 12291841 cycles

Turn OFF INLINE and Apply PIPELINE Directive Step 4

4-1. Create a new solution by copying the previous solution settings. Prevent
the automatic INLINE and apply PIPELINE directive. Generate the solution
and understand the output.

4-1-1. Select Project > New Solution or click on () from the tools bar buttons.

4-1-2. A Solution Configuration dialog box will appear. Note that the check boxes of Copy existing
directives from solution and Copy custom constraints directives from solution are checked with
Solution1 selected. Click the Finish button to create a new solution with the default settings.

Lab Workbook Improving Performance Lab

www.xilinx.com/university ZedBoard 2-11
xup@xilinx.com

© Copyright 2014 Xilinx

Figure 10. Creating a new Solution after copying the existing solution

4-1-3. Make sure that the yuv_filter.c source is opened and visible in the information pane, and click on
the Directive tab.

4-1-4. Select function yuv_scale in the directives pane, right-click on it and select Insert Directive...

4-1-5. Click on the drop-down button of the Directive field. A pop-up menu shows up listing various
directives. Select INLINE directive.

4-1-6. In the Vivado HLS Directive Editor dialog box, click on the off option to turn OFF the automatic
inlining. Make sure that the Directive File is selected as destination. Click OK.

Improving Performance Lab Lab Workbook

ZedBoard 2-12 www.xilinx.com/university
xup@xilinx.com

© Copyright 2014 Xilinx

Figure 11. Turning OFF the inlining function

o When an object (function or loop) is pipelined, all the loops below it, down through the
hierarchy, will be automatically unrolled.

o In order for a loop to be unrolled it must have fixed bounds: all the loops in this design have
variable bounds, defined by an input argument variable to the top-level function.

o Note that the TRIPCOUNT directive on the loops only influences reporting, it does not set
bounds for synthesis.

o Neither the top-level function nor any of the sub-functions are pipelined in this example.

o The pipeline directive must be applied to the inner-most loop in each function – the inner-
most loops have no variable-bounded loops inside of them which are required to be unrolled
and the outer loop will simply keep the inner loop fed with data

4-1-7. Expand the yuv_scale in the Directives tab, right-click on YUV_SCALE_LOOP_Y object and
select insert directives …, and select PIPELINE as the directive.

4-1-8. Leave II (Initiation Interval) blank as Vivado HLS will try for an II=1, one new input every clock
cycle.

4-1-9. Click OK.

4-1-10. Similarly, apply the PIPELINE directive to YUV2RGB_LOOP_Y and RGB2YUV_LOOP_Y objects.
At this point, the Directive tab should look like as follows.

Lab Workbook Improving Performance Lab

www.xilinx.com/university ZedBoard 2-13
xup@xilinx.com

© Copyright 2014 Xilinx

Figure 12. PIPELINE directive applied

4-1-11. Click on the Synthesis button.

4-1-12. When the synthesis is completed, select Project > Compare Reports… or click on to
compare the two solutions.

4-1-13. Select Solution1 and Solution2 from the Available Reports, and click on the Add>> button.

4-1-14. Observe that the latency reduced from 34417926 to 7372823 clock cycles.

Improving Performance Lab Lab Workbook

ZedBoard 2-14 www.xilinx.com/university
xup@xilinx.com

© Copyright 2014 Xilinx

Figure 13. Performance comparison after pipelining

In Solution1, the total loop latency of the inner-most loop was loop_body_latency x loop iteration
count, whereas in Solution2 the new total loop latency of the inner-most loop is
loop_body_latency + loop iteration count.

4-1-15. Scroll down in the comparison report to view the resources utilization. Observe that the FFs,
LUTs, and DSP48E utilization increased whereas BRAM remained same.

Figure 14. Resources utilization after pipelining

Apply DATAFLOW Directive and Configuration Command Step 5

5-1. Create a new solution by copying the previous solution (Solution2) settings.
Apply DATAFLOW directive. Generate the solution and understand the
output.

5-1-1. Select Project > New Solution or click on () from the tools bar buttons.

5-1-2. A Solution Configuration dialog box will appear. Click the Finish button (with Solution2 selected).

5-1-3. Close all inactive solution windows by selecting Project > Close Inactive Solution Tabs.

Lab Workbook Improving Performance Lab

www.xilinx.com/university ZedBoard 2-15
xup@xilinx.com

© Copyright 2014 Xilinx

5-1-4. Make sure that the yuv_filter.c source is opened in the information pane and select the Directive
tab.

5-1-5. Select function yuv_filter in the directives pane, right-click on it and select Insert Directive...

5-1-6. A pop-up menu shows up listing various directives. Select DATAFLOW directive and click OK.

5-1-7. Click on the Synthesis button.

5-1-8. When the synthesis is completed, the synthesis report is automatically opened.

5-1-9. Observe additional information, Dataflow Type, in the Performance Estimates section is
mentioned.

Figure 15. Performance estimate after DATAFLOW directive applied

o The Dataflow pipeline throughput indicates the number of clocks cycles between each set of
inputs reads. If this throughput value is less than the design latency it indicates the design
can start processing new inputs before the currents input data are output.

o While the overall latencies haven’t changed significantly, the dataflow throughput is showing
that the design can achieve close to the theoretical limit (1920x1280 = 2457600) of
processing one pixel every clock cycle.

5-1-10. Scrolling down into the Area Estimates, observe that the number of BRAMs required has doubled.
This is due to the default dataflow ping-pong buffering.

Improving Performance Lab Lab Workbook

ZedBoard 2-16 www.xilinx.com/university
xup@xilinx.com

© Copyright 2014 Xilinx

Figure 16. Resource estimate with DATAFLOW directive applied

o When DATAFLOW optimization is performed, memory buffers are automatically inserted
between the functions to ensure the next function can begin operation before the previous
function has finished. The default memory buffers are ping-pong buffers sized to fully
accommodate the largest producer or consumer array.

o Vivado HLS allows the memory buffers to be the default ping-pong buffers or FIFOs. Since
this design has data accesses which are fully sequential, FIFOs can be used. Another
advantage to using FIFOs is that the size of the FIFOs can be directly controlled (not possible
in ping-pong buffers where random accesses are allowed).

5-1-11. The memory buffers type can be selected using Vivado HLS Configuration command.

5-2. Apply Dataflow configuration command, generate the solution, and
observe the improved resources utilization.

5-2-1. Select Solution > Solution Settings… or click on to access the configuration command
settings.

5-2-2. In the Configuration Settings dialog box, select General and click the Add… button.

5-2-3. Select config_dataflow as the command using the drop-down button and fifo as the
default_channel. Enter 2 as the fifo_depth. Click OK.

Figure 17. Selecting Dataflow configuration command and FIFO as buffer

Lab Workbook Improving Performance Lab

www.xilinx.com/university ZedBoard 2-17
xup@xilinx.com

© Copyright 2014 Xilinx

5-2-4. Click OK again.

5-2-5. Click on the Synthesis button.

5-2-6. When the synthesis is completed, the synthesis report is automatically opened.

5-2-7. Note that the performance parameter has not changed; however, resource estimates show that
the design is not using any BRAM and other resources (FF, LUT) usage has also reduced.

Figure 18. Resource estimation after Dataflow configuration command

Export and Implement the Design in Vivado HLS Step 6

6-1. In Vivado HLS, export the design, selecting VHDL as a language, and run
the implementation by selecting Evaluate option.

6-1-1. In Vivado HLS, select Solution > Export RTL or click on the button to open the dialog box so
the desired implementation can be run.

An Export RTL Dialog box will open.

6-1-2. Click on the drop-down button of the Option field and select VHDL as the language and tick
Evaluate.

6-1-3. Click OK and the implementation run will begin. You can observe the progress in the Vivado HLS
Console window. When the run is completed the implementation report will be displayed in the
information pane.

Improving Performance Lab Lab Workbook

ZedBoard 2-18 www.xilinx.com/university
xup@xilinx.com

© Copyright 2014 Xilinx

Figure 19. Implementation results in Vivado HLS

Note that the implementation was successful, meeting the expected timings.

6-1-4. Close Vivado HLS by selecting File > Exit.

Conclusion

In this lab, you learned that even though this design could not be pipelined at the top-level, a strategy of
pipelining the individual loops and then using dataflow optimization to make the functions operate in
parallel was able to achieve the same high throughput, processing one pixel per clock. When
DATAFLOW directive is applied, the default memory buffers (of ping-pong type) are automatically
inserted between the functions. Using the fact that the design used only sequential (streaming) data
accesses allowed the costly memory buffers associated with dataflow optimization to be replaced with
simple 2 element FIFOs using the Dataflow command configuration.

Lab Workbook Improving Performance Lab

www.xilinx.com/university ZedBoard 2-19
xup@xilinx.com

© Copyright 2014 Xilinx

Answers

1. Answer the following questions for yuv_filter:

Estimated clock period: 8.32 ns

Worst case latency: 34417925 clock cycles

Number of DSP48E used: 12

Number of BRAMs used: 7200

Number of FFs used: 566

Number of LUTs used: 833

2. Answer the following questions rgb2yuv:

Estimated clock period: 8.32 ns

Worst case latency: 12291841 clock cycles

Number of DSP48E used: 5

Number of FFs used: 180

Number of LUTs used: 314

3. Answer the following questions for yuv2rgb:

Estimated clock period: 7.75 ns

Worst case latency: 12291841 clock cycles

Number of DSP48E used: 4

Number of FFs used: 186

Number of LUTs used: 250

