
Embedded System Design and Modeling
EE382V, Spring 2014

Homework #1
Languages

Assigned: January 23, 2014
Due: February 6, 2014

Instructions:
• Please submit your solutions via Blackboard. Submissions should include a single PDF

with the writeup and a single Zip or Tar archive for any supplementary files (e.g. source
files, which has to be compilable by simply running 'make' and should include a
README with instructions for running each model).

• You may discuss the problems with your classmates but make sure to submit your own
independent and individual solutions.

• Some questions might not have a clearly correct or wrong answer. In general, grading is
based on your arguments and reasoning for arriving at a solution.

Problem 1.1: SpecC Language and Modeling
The SpecC environment is installed on the ECE LRC Linux servers. Instructions for accessing
and setting up the tools are posted on the class website:

http://www.ece.utexas.edu/~gerstl/ee382v_s14/docs/SpecC_setup.pdf
In short, once logged in, you need to load the corresponding module:

module load sce

The SpecC installation includes a comprehensive set of examples showing the features and use
of the language. Examples are found in $SPECC/examples/simple/. You can copy them
into a working directory:

mkdir hw1.1
cd hw1.1
cp $SPECC/examples/simple/* .

And then use the provided Makefile to compile and simulate all examples:
make all
make test

It is recommended to inspect the sources of all examples and the included Makefile to
understand the use of scc for the compilation and simulation process, and to experiment with
the scc command-line usage and with the various sir_xxx tools.

The directory $SPECC/examples/parity contains an example of a parity generator written
in SpecC. For this assignment, copy the example to a local working directory and follow the
instructions in the README file to compile and run it:

(a) Draw the SpecC diagram (graphical notation/representation) of the system and briefly
describe its functionality.

(b) Modify the example to separate computation from communication. Create a new channel
that encapsulates basic communication primitives and replace all shared variables and
events between Ones and Even to exclusively use one or more instances of your custom
channel. You can look at the example on slide 41 of lecture 2 for guidance. Simulate the
modified code to verify its correctness.

http://www.ece.utexas.edu/%7Egerstl/ee382v_s14/docs/SpecC_setup.pdf

EE382V: Embedded Sys Dsgn and Modeling, Homework #1 2

(c) Now replace your custom channel with one or more c_queue instances out of the
SpecC standard channel library. Again, simulate the code to verify correctness. Does it
make any difference whether you use a c_queue or a c_double_handshake
channel? Why or why not?

(d) Similarly upgrade the communication between the main design and the testbench (IO) to
use proper communication channels (pick what you feel is appropriate). In the process,
modify the parity checker to separate out all communication with the testbench into
additional Start and Done behaviors that execute before and after the Ones/Even
combination, respectively. Make sure to create a clean SpecC hierarchy that does not mix
different types of behavioral compositions in one parent behavior. Again, simulate and
make sure everything works correctly. Does your design exhibit any actual concurrency
(in the sense of code that can run truly in parallel)? How could the model be changed to
expose additional parallelism (just sketch the graphical diagram; specifically think about
situations in which a continuous stream of data items need to be run through the parity
checker)?

Problem 1.2: SystemC Modeling
The SystemC environment is installed on the ECE LRC Linux servers. Instructions for accessing
and setting up the tools are posted on the class website:

http://www.ece.utexas.edu/~gerstl/ee382v_f11/docs/SystemC_setup.pdf
In short, once logged in, you need to set the $SYSTEMC environment variable (depending on
your $SHELL):

setenv SYSTEMC /usr/local/packages/systemc-2.2.0 ([t]csh)
or

export SYSTEMC=/usr/local/packages/systemc-2.2.0 ([ba]sh)

The SystemC installation comes with a set of examples, available under
$SYSTEMC/examples. You can copy an example into a working directory:

mkdir hw1.2
cd hw1.2
cp /home/projects/gerstl/pkg/systemc-2.2.0/examples/simple_fifo/* .

And then use the provided Makefile to compile and simulate the example:
make
./simple_fifo

Inspect the sources of the example and the included Makefile to become familiar with
SystemC, including its compilation and simulation process. You can use this example to
experiment with the Makefile usage and as a starting point for developing the code for this
assignment:

(a) Modify the example to replace the custom fifo channel with a corresponding
sc_fifo<char> channel from the standard SystemC channel library. Simulate the
code to verify correctness and submit the modified source code.

(b) Translate the SpecC model of the parity checker from Problem 1.1(c) into a
corresponding SystemC model. Aim to be as faithful as possible in replicating SpecC
concepts using equivalent SystemC features. As discussed in class, this is very similar to
the process the SpecC compiler performs when translating a SpecC model into a C++

http://www.ece.utexas.edu/%7Egerstl/ee382v_f11/docs/SystemC_setup.pdf

EE382V: Embedded Sys Dsgn and Modeling, Homework #1 3

executable for simulation. In the process, the SpecC behavior hierarchy is converted into
a matching hierarchy of SystemC modules where each SpecC behavior becomes a
SystemC module with exactly one main process. As a reference, you can follow the ideas
outlined in reference [2] on the class webpage. Make sure your SystemC model compiles
and simulates.

(c) Translate the SpecC model of the modified parity checker from Problem.1.1(d) into a
corresponding SystemC model. Again, try to be as faithful as possible in replicating
SpecC concepts using equivalent SystemC features. How do the two languages compare
in expressiveness for being able to capture the behavior of the two parity checker
variants? Based on your experiences, what is your personal opinion about the pros and
cons of each language?

Problem 1.3: Discrete-Event Semantics

For each of the following code examples, what is the value of myB printed at the end of
execution and at what simulated time does the program terminate. You are free to run the code
on top of the SpecC simulator and observe the program output, but you need to provide an
explanation and reasoning of why the program is behaving as it is (e.g. sequence of events
happening during simulation):

(a) (b) (c)

behavior A(int myB)
{

void main(void)
{

 myB = 10;
 }
};

behavior B(int myB)
{

void main(void)
{

 myB = 42;
 }
};

behavior Main(void)
{

int myB;

 A a(myB);
 B b(myB);

int main(void) {
 par { a; b; }
 printf("%d", myB);
 return 0;
 }
};

behavior A(int myB)
{

void main(void) {
 waitfor 42;

 myB = 10;
 }
};

behavior B(int myB)
{

void main(void)
{

 myB = 42;
 }
};

behavior Main(void)
{

int myB;

 A a(myB);
 B b(myB);

int main(void) {
 par { a; b; }
 printf("%d", myB);
 return 0;
 }
};

behavior A(int myB)
{

void main(void) {
 myB = 10;
 waitfor 42;
 }
};

behavior B(int myB)
{

void main(void) {
 waitfor 10;

 myB = 42;
 }
};

behavior Main(void)
{

int myB;

 A a(myB);
 B b(myB);

int main(void) {
 par { a; b; }
 printf("%d", myB);
 return 0;
 }
};

EE382V: Embedded Sys Dsgn and Modeling, Homework #1 4

 (d) (e)

(f) What code has to be inserted at the beginning of behavior B (line 15) in (e) to change the
output of the program? Give two different options. What must not appear there for the
program not to deadlock?

(g) Why do SpecC events have a semantic in which they can get lost? Under what condition
do SpecC events get lost? What type of channel/communication could not be modeled if
delivery would always be guaranteed?

behavior A(int myA, event e)
{

void main(void) {
 myA = 10;

 notify e;
 myA = 11;
 notify e;
 waitfor 10;

 }
};

behavior B(int myA, int myB, event e)
{

void main(void) {
 wait e;

 myB = myA;
 }
};

behavior Main(void)
{

int myA;
int myB;
event e;

 A a(myA, e);
 B b(myA, myB, e);

int main(void) {
 par { a; b; }
 printf("%d", myB);
 return 0;
 }
};

behavior A(int myA, event e)
{

void main(void) {
 myA = 10;

 notify e;
 waitfor 10;
 myA = 11;
 notify e;

 }
};

behavior B(int myA, int myB, event e)
{

void main(void) {
 wait e;

 myB = myA;
 }
};

behavior Main(void)
{

int myA;
int myB;
event e;

 A a(myA, e);
 B b(myA, myB, e);

int main(void){
 par { a; b; }
 printf("%d", myB);
 return 0;
 }
};

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

	Problem 1.1: SpecC Language and Modeling
	Problem 1.2: SystemC Modeling
	Problem 1.3: Discrete-Event Semantics

