
Embedded System Design and Modeling
EE382V, Spring 2014

Homework #2
Models of Computation (MoCs)
Assigned: February 18, 2014
Due: February 27, 2014

Instructions:
• Please submit your solutions via Blackboard. Submissions should include a single PDF

with the writeup and a single Zip or Tar archive for any supplementary files (e.g. source
files, which has to be compilable by simply running 'make' and should include a
README with instructions for running each model).

• You may discuss the problems with your classmates but make sure to submit your own
independent and individual solutions.

• Some questions might not have a clearly correct or wrong answer. In general, grading is
based on your arguments and reasoning for arriving at a solution.

Problem 2.1: Models of Computation and Languages
In class, we learned about different Models of Computation (MoCs) for system specification: KPN,
SDF, FSM(D), HCFSM. We also discussed that such higher-level models can be mapped down to a
basic discrete-event (DE) MoC for simulation. Briefly sketch (show code snippets) how each of the
above MoCs can be represented on top of SpecC. Discuss in how far the SpecC model is
semantically equivalent to the original MoC. Apart from DE-driven simulation/execution, how
well do languages such as SpecC (or SystemC) support capturing such models? Specifically,
think of analysis and synthesis (e.g. scheduling) of captured models by design automation tools.

Problem 2.2: Kahn Process Networks (KPN)
(a) Consider the two variants of the KPN example we discussed in class. Again, assume P3

does not consume any tokens on the P2→P3 arc, while all other processes service their
ports in a round-robin fashion (such that there is no deadlock and the KPN is supposed to
run continuously):

For each of the two examples, is there a scheduling strategy that is non-terminating (free
of artificial deadlocks), complete, bounded or any combination thereof? If so, what is the
corresponding strategy each? What can you conclude about the tradeoffs between non-
termination, completeness and boundedness in particular instances of models? Are there
combinations of properties that are related or are there always choices to be made, and if
so, under what conditions (cases of KPN models)?

(b) In class, we mentioned that Parks’ algorithm is not guaranteed to find a complete,
bounded and non-terminating schedule even if one exists. Show an example of a KPN

P1

P2

P3

P4

P1

P2

P3

P4

EE382V: Embedded Sys Dsgn and Modeling, Homework #2 2

where such a schedule exists but Parks’ algorithm fails to find it. Hint: in the KPN
example presented in class, think about token patterns that can happen on the P2→P3
edge.

(c) Can every dataflow model be executed as a Kahn Process Network (KPN)? Why or why
not? If yes, what would be the advantages and disadvantages of executing a SDF graph as
a KPN? If not, under what conditions can it not?

(d) Can every KPN be converted into an equivalent dataflow model? Why or why not? If yes,
what would be the advantages and disadvantages? If not, under what conditions is a
conversion not possible?

Problem 2.3: Dataflow
For the SDF graph on the right:

(a) Show that the graph is consistent, and that it has a valid
schedule. What is the repetition vector of the graph?

(b) It can be shown that every SDF graph can be converted into
an equivalent homogeneous SDF (HSDF) model. In the so-
called precedence graph, every actor firing in the repetition
vector is turned into a dedicated homogeneous actor
instance (e.g. firings A1, A2, … of an SDF actor A). Show
the precedence graph for this example. What can you say about the complexity (number
of nodes) of the precedence graph as a function of the size of the original SDF graph?

(c) Are both of the initial tokens necessary? What is the minimum number of initial tokens
needed for this graph to be consistent and to have a valid schedule? Does adding or
removing tokens change the consistency or validity of the graph? Assuming actor d
produces the external output of the graph, does the behavior and precedence graph
change, and if so, how?

(d) List all possible minimal periodic static schedules for one iteration of the graph.

(e) Find the periodic schedule with the lowest token buffer usage. What is the minimum
buffer usage?

(f) Assume each actor firing executes in one time unit. Find the schedule with the highest
throughput (output token rate, i.e. average number of firings of the output actor d per time
unit). What is the maximum throughput on a single processor? What is the maximum
throughput you can achieve on two processors?

For the SDF graph on the right:

(g) Show that the graph is consistent and that it has a
valid schedule. What is the repetition vector of the
graph?

(h) Show the precedence graph for this SDF.

(i) Find the periodic single-processor schedule with the
lowest buffer usage. What is the minimally required
buffer space?

a c

b d

21

1

3

1

2

1

1

a

b

c

d
1

2
3

2 1
1

1
3

EE382V: Embedded Sys Dsgn and Modeling, Homework #2 3

For the CSDF graph on the right:

(j) Assuming that within each periodic iteration of the
graph, the number of firings of each actor must be
an integer multiple of the total number of
phases/firings in the actor’s cycle, show that the
graph is consistent and that it has a valid repetitive
schedule. What is the repetition vector of the graph?

(k) Show the precedence graph for this CSDF.

(l) Find the periodic single-processor schedule with the lowest buffer usage. What is the
minimally required buffer space? What are the differences in schedulability for this graph
compared to the similar SDF graph above?

Problem 2.4: State Machines
In class, we have discussed the concepts of extended state machines (FSMs with data), hierarchy
(OR state) and concurrency (AND state) for managing complexities in FSMD and HCFSM
models.

(a) Convert the extended FSM (EFSM)/FSMD on the right into
an equivalent FSM. Can every FSMD be represented as a
FSM? What can you say about the complexity (number of
states) of the FSM as a function of the size and parameters of
the original FSMD?

(b) Convert the HCFSM(D) on the right into an
equivalent FSMD. Note that the concurrent
(AND) composition of states is communicating
through signal c, and that the HCFSM has
Mealy semantics. Transitions for unspecified
input conditions default to remaining in the
same state, where unspecified outputs default to
absence of producing any event. Absence is
otherwise indicated as negated conditions on
signals. What functionality does the state machine actually perform?

(c) Try to reduce the complexity of the FSM on the right by
converting it into a HCFSM using hierarchy (OR states) and/or
concurrency (AND states) wherever possible. What can you
generally say about the complexity (number of states and
transitions) of an FSM as a function of the size of an equivalent
HCFSM?

a

b

c

d
[0,1]

[2]
[1,2]

[1,1] [0,1]
[1,0,0]

[1]
[1,1,1]

r
d / es1

s2

s3

d / e
s

v:=0

r

c / s1

s2

s3

s4

c /
v:=v+1s

c / v:=v+1

v:=0 s5

d / c d / c

idl opn

up f

x

y

u

r

dn

d

r

r

t

f

f

f

x

y

	Problem 2.1: Models of Computation and Languages
	Problem 2.2: Kahn Process Networks (KPN)
	Problem 2.3: Dataflow
	Problem 2.4: State Machines

