Graphical System Design

Jacob Kornerup, Ph.D. LabVIEW R&D National Instruments

ni.com

About me

- Ph.D. UT Computer Sciences 1997
 - Parallel, functional programming
- Assistant Professor 1997-99
 - ECE Dept. SMU, Dallas
- Principal SW Architect, National Instruments, 1999 -
 - Real-time systems
 - Programming with time
 - Real-time networking
 - Models of Computation
 - High Level Synthesis for FPGAs
 - Research projects with Drs. Gerstlauer and Evans

Agenda for Today

- Embedded system design
- Platform based design
- Models of Computation
- Real-time streaming applications
- System design tools

National Instruments

- **Revenue:** \$1.14 Billion in 2013
- **Global Operations:** Approximately 6,870 employees; operations in more than 40 countries
- **Broad customer base**: More than 35,000 companies served annually
- **Diversity**: No industry >15% of revenue
- **Culture**: Ranked among top 25 companies to work for worldwide by the Great Places to Work Institute

We Enable Graphical System Design

LEGO® MINDSTORMS ® NXT EV3

From K...

SPACEX

... to Rocket Science

High-Level Design Models

Graphical System Design Platform

Tough Real-Time Challenges

Large Telescope Mirror Control

Tokomak Plasma Control

Wind Turbine Sound Source Characterization

CERN Hadron Collider

Early Cancer Detection

Structural Health Monitoring

European Southern Observatory Extremely Large Telescope

21

M1 Mirror 42 meters

ESO ELT M1 Mirror Control

984 MIRRORS

3,000 ACTUATORS

6,000 SENSORS

3k x 6k matrix

1 MILLISECOND

Optical Coherence Tomography Research

Early Cancer Detection with LabVIEW & PXI

~ 1.5 M FFTs / sec for Real-Time Performance

Business Trends

ni.com

The Long Tail

["The Long Tail," Chris Anderson Wired, 2004]

Design discontinuities in EDA tools

[1] Kurt Keutzer, UC Berkeley EECS 244 class

ni.com

Addressing Design Discontinuity

- New Methodology maps from the higher level abstraction down to the reliable foundation
 - A design-entry approach that offers 10X productivity improvement.
 - A functional verification approach that offers 10-100X speed-up in verification
 - An implementation approach that is predictable and reliable

[1] Matthias Gries, Kurt Keutzer. "Building ASIPs: The Mescal Methodology", Springer, 2005, 0-387-26057-9

National Instruments Vision Evolved

"To do for embedded what the PC did for the desktop."

Graphical System Design

Virtual Instrumentation

Complex instrumentation Re RF Ei Digital H Distributed

Real-time measurements Embedded monitoring Hardware in the loop

Embedded Systems

Industrial control RT/FPGA systems Electronic devices C code generation

The Next 30 Years: Expanding LabVIEW into System Design

Trends in Embedded Software

Alberto Sangiovanni-Vincentelli, UC Berkeley

"The design of embedded systems is becoming more difficult as design complexity increases, time-to-market pressures continue, and development teams with diverse backgrounds are assembled. The *platform-based design* methodology (PBD) is a technique to combat these challenges." [5]

"Given the cost and risks associated to developing hardware solutions, an increasing number of companies is selecting *hardware platforms that can be customized by reconfiguration and/or by software programmability*. In particular, *software is taking the lion's share of the implementation budgets and cost*. In cell phones, more than *1 million lines of code* is standard today, while in automobiles the estimated number of lines by 2010 is in the order of *hundreds of millions*." [6]

[5] A. Davare, et al. "A Next-Generation Design Framework for Platform-Based Design"
[6] Alberto Sangiovanni-Vincentelli, "Quo Vadis, SLD? Reasoning About the Trends and Challenges of System Level Design", Proceedings of the IEEE, Vol. 95, No. 3, March 2007.

Platform Based Design & Models of Computation

- Constructs for application domain experts
- Structured implementation with the right levels of abstraction
- Separation of concerns between functionality and architecture
- Evolve designs on hardware "generations"
- Design flow that supports analysis, simulation, verification and synthesis

[1] E.A. Lee, "Embedded Software", Revised from UCB ERL Memorandum M01/26, November 1, 2001,
[2] E.A. Lee and S. Neuendorffer, "Concurrent Models of Computation for Embedded Software", Memorandum No. UCB/ERL M04/26, July 22, 2004

[3] Alberto Sangiovanni-Vincentelli, "Quo Vadis, SLD? Reasoning About the Trends and Challenges of System Level Design", Proceedings of the IEEE, Vol. 95, No. 3, March 2007.

ni.com

The Y-Chart System Design Methodology

Platform Dimensions

- Distributed
- Heterogeneous computing platforms
 - Real-time OS, FPGA, Desktop OS, GPU
- Communication schemes
- Real-time
- 10
- Timing

Application Dimensions

- Algorithm development
- IO characterization
 - Timing characteristics
- Real-time constraints
- Integrating Models of Computation
- State management

Trends in Embedded Software Edward Lee, UC Berkeley

"The principal role of embedded software is interaction with the physical world. Consequently, *the designer of that software should be the person who best understands that physical world.*" [domain expert] [1]

"The engineers that write embedded software are *rarely computer scientists*. They are *experts in the application domain* with a good understanding of the target architectures they work with." [1]

"Design of embedded software will require models of computation that support concurrency." [1]

"In embedded software, *concurrency* and *time* are essential aspects of a design." [2]

[1] E.A. Lee, "Embedded Software", Revised from UCB ERL Memorandum M01/26, November 1, 2001, (<u>http://ptolemy.eecs.berkeley.edu/publications/papers/02/embsoft/embsoftwre.pdf</u>)
[2] E.A. Lee and S. Neuendorffer, "Concurrent Models of Computation for Embedded Software", Memorandum No. UCB/ERL M04/26, July 22, 2004 (<u>http://mesl.ucsd.edu/gupta/cse237b/Readings/concurrentmodels.pdf</u>)

ni.com

LabVIEW Today

Models of Computation

Multiply / Accumulate

ni.com

Design and Simulation

MMSE Equalizer (matrix inversion) problem:

Textual Math

Heterogeneous Architectures

LabVIEW-Based System Design Tools

- Current project at National Instruments
 - Exploration of concepts and directions
- 2 arcs of exploration
 - System Design Tool
 - DSP algorithm development

Looking Closer at DSP Design

- Focus on DSP streaming applications running on FPGAs
- Explore the right Models of Computation (MoCs)
- Provide analysis and optimization
 - Throughput, latency, area
- Allow simulation and test bed creation
- Generate performing VHDL code
- Provide debugging capabilities

MoCs for Streaming Applications

Key trade-off: Analyzability vs. Expressibility

Dataflow Execution

LabVIEW Dataflow

Multirate Execution

• LabVIEW Execution

• Asynchronous Execution

Platforms for FPGA-based System Design

LabVIEW Today

LabVIEW DSP Design Module Early Access Program

Making Applications Faster to Design

Karplus-Strong Plucked String Algorithm

High-Speed Streaming is Complex Today

- Challenges
 - LabVIEW G model
 - Original specification from algorithm designer
 - Not feasible for highly efficient implementation on FPGA targets

- Implementation challenges
 - Floating to fixed point conversion
 - Array data to point-by-point data conversion
 - Explicit concurrency representation
 - FPGA target constraints
 - Integration with internal and third-party IP

Domain Expert Expectations for High-Speed Streaming

Parameterized Synchronous Dataflow

• High-level DSP representation that matches algorithm theory

- Algorithms written independently of hardware target
- Deal in domain terms of token rate, throughput, and latency
- Explore high-level design tradeoffs without diving into implementation details
 - Tune performance with high-level constraints
 - Access the details if needed

OFDM Transmitter 20 MHz LTE Transmission Band

- Rapidly prototype PHY layer baseband DSP
- Co-design PHY layer algorithms with higher MAC layer protocols
- Seamless integration with wide array of RF hardware

DSP Design Module Value

Enable an algorithm designer to specify an intuitive diagram

that generates real-time DSP implementations on FPGAs

RF/Communications PHY FPGA Software

Graphical System Design Platform

Summary

- Complexity of system design
- New productivity tools
- System design
 - Design distributed systems
- DSP Design
 - Design DSP algorithms

