Modeling

EE382V: Embedded System Design and Modeling

Lecture 1 – Introduction

Andreas Gerstlauer **Electrical and Computer Engineering** University of Texas at Austin gerstl@ece.utexas.edu

Lecture 1: Outline

- Introduction
 - Embedded systems
 - System-level design
- **Course information**
 - Topics
 - Logistics
 - Projects
- Design methodology
 - · System-level design flow
 - · Models and methodologies

EE382V: Embedded Sys Dsgn and Modeling, Lecture 1

© 2014 A. Gerstlauer

Embedded Systems

- System-in-a-system
 - Application-specific
 - Tightly constrained

- Far bigger market than generalpurpose computing (PCs, servers)
 - 98% of all processors sold [Turley02, embedded.com]

- Application demands & technological advances
- ➤ Increasingly networked and programmable

EE382V: Embedded Sys Dsgn and Modeling, Lecture 1

© 2014 A. Gerstlauer

3

Cyber-Physical Systems (CPS)

Not transformative

- Output = F(Input)
- ➤ Procedural/batch processing
- But reactive

- Continuous interaction with environment
- Sense and act on the physical world
- Concurrency and time (order)

EE382V: Embedded Sys Dsgn and Modeling, Lecture 1

© 2014 A. Gerstlauer

General-Purpose Computing

- We are reaching physical limits of technology scaling
 - Dark silicon: power/utilization/... walls
 - Mobile devices and no leap in battery technology
 - > Efficiency is the new performance
- > Opportunity and need for specialization
 - Heterogeneous multi-core / Asynchronous CMP
 - ➤ Big/little architectures
 - ➤ GP-GPUs
 - Flexibility vs. specialization
 - > Right mix of cores?
 - ➤ How to "program"?

EE382V: Embedded Sys Dsgn and Modeling, Lecture 1

© 2014 A. Gerstlauer

5

Implementation Options

Source: T. Noll, RWTH Aachen, via R. Leupers, "From ASIP to MPSoC", Computer Engineering Colloquium, TU Delft, 2006

EE382V: Embedded Sys Dsgn and Modeling, Lecture 1

© 2014 A. Gerstlauer

Lecture 1: Outline

- **✓** Introduction
 - √ Embedded systems
 - √ System-level design
- Course information
 - Topics
 - Logistics
 - Projects
- Design methodology
 - System-level design flow
 - Models and methodologies

EE382V: Embedded Sys Dsgn and Modeling, Lecture 1

© 2014 A. Gerstlauer

Course Topics

- System-level design
 - Methodologies and languages: SpecC, SystemC
- Specification modeling
 - Formal Models of Computation (MoC)
 - Parallel programming models, threads, dataflow, process networks
 - Hierarchical and concurrent finite state machine (FSM) models
- System synthesis
 - Design space exploration and optimization
 - Mapping and scheduling algorithms, exploration heuristics
 - System-level design tools: SCE
- Architecture modeling
 - Implementation and simulation (virtual prototyping) models
 - Host-compiled OS and processor models for computation
 - Transaction-level modeling of communication
- Prerequisites
 - Software: C/C++ (algorithms and data structures)
 - Hardware: VHDL/Verilog (digital design)
 - > Embedded systems and embedded software

EE382V: Embedded Sys Dsgn and Modeling, Lecture 1

© 2014 A. Gerstlauer

15

Class Administration

- Schedule
 - Lectures: TTh 11:00am-12:30pm, WEL 3.402
- Instructor
 - Prof. Andreas Gerstlauer < gerstl@ece.utexas.edu>
 - Office hours: ACE 6.118, TW 2-3pm, or after class/by appt.
- Teaching Assistant
 - Parisa Razaghi <parisa.r@utexas.edu>
 - Office hours: MF 3-4pm, ENS 110
- Information
 - Web page: http://www.ece.utexas.edu/~gerstl/ee382v_s14
 - Announcements, assignments, grades: Blackboard
 - · Questions, discussions: Blackboard

EE382V: Embedded Sys Dsgn and Modeling, Lecture 1

© 2014 A. Gerstlauer

Textbooks (1)

Recommended

 D. Gajski, S. Abdi, A. Gerstlauer, G. Schirner, Embedded System Design: Modeling, Synthesis, Verification, Springer, 2009 ("orange book")

Optional

- E. A Lee, S. Seshia, Introduction to Embedded Systems: A Cyber-Physical Systems Approach, 2011
 - Models of computation (MoCs)
 - http://leeseshia.org

EE382V: Embedded Sys Dsgn and Modeling, Lecture 1

© 2014 A. Gerstlauer

17

Textbooks (2)

Background material

- A. Gerstlauer, R. Doemer, J. Peng, D. Gajski, System Design: A Practical Guide with SpecC, Kluwer, 2001 ("yellow book")
 - Practical, example-driven introduction using SpecC
 - Electronic copy of selected chapters on Blackboard
- T. Groetker, S. Liao, G. Martin, S. Swan, System Design with SystemC, Kluwer, 2002 ("black book")
 - Reference for SystemC language and methodology

EE382V: Embedded Sys Dsgn and Modeling, Lecture 1

© 2014 A. Gerstlauer

Policies

Grading

Homeworks: 20%
Labs: 20%
Midterm: 25%
Project: 35%
No late submissions!

Academic dishonesty

- Homeworks are independent
 - Discuss questions and problems with others
 - Turn in own, independently developed solution
- Labs and project are teamwork
 - Teams of up to 3 students
 - One report and presentation

EE382V: Embedded Sys Dsgn and Modeling, Lecture 1

© 2014 A. Gerstlauer

19

Homeworks and Labs

- Two to three homeworks and one exam
 - Cover theoretical aspects of system design
 - Languages
 - Models
 - Exploration and optimization
 - Some practical implementation
 - Exposure to general language and modeling concepts
- Two to three labs
 - Real-world system design
 - Design example using SpecC and System-on-Chip Environment (SCE)
 - From specification to implementation
 - Modeling
 - Design space exploration
 - Hardware/software synthesis

EE382V: Embedded Sys Dsgn and Modeling, Lecture 1

© 2014 A. Gerstlauer

Project

Two options

- Research project
 - System design research problem
 - Literature survey on system design research area
- Implementation project
 - Non-trivial system design example/case study
 - Specification, exploration, implementation

Project timeline (tentative)

- Abstract: March 4 (email)
- Proposal, literature survey: March 18
- Presentations: last week of classes (Apr. 29 & May 1)
- Report: finals week (May 8)
- Final report and presentation in publishable quality

EE382V: Embedded Sys Dsgn and Modeling, Lecture 1

© 2014 A. Gerstlauer

21

Some Possible Projects

- Design projects
 - (Embedded) system design example
 - Specify, model, simulate, explore, synthesize using SCE
 - » Existing examples: MP3 Decoder, AC3 Decoder, Jpeg Encoder, GSM Vocoder
 - » Backend synthesis down to ARM+FPGA prototyping board
- Research projects
 - Modeling
 - Specification modeling
 - » Develop/modify a language or MoC: data parallel extensions of SpecC/SystemC
 - » Translation between MoCs & languages: from Matlab/SDF/... to SpecC/SystemC
 - Architecture modeling
 - » Component modeling: QEMU-SpecC/SystemC integration, bus modeling
 - » Automatic model generation: generate bus TLMs from abstract protocol descriptions
 - » OS modeling: OS-internal timing estimation and back-annotation
 - » Performance estimation and modeling (timing, power, reliability, ...): statistical simulation, parallel or hardware/software co-simulation of functional & performance models
 - » Assertion-based verification in a TLM environment
 - Synthesis
 - Pick an implementation problem and solve it
 - » Decision making: machine learning for optimization (allocation, partitioning, scheduling), design space exploration for dataflow models/signal processing systems
 - » OS scheduling for power, performance, reliability
 - » Hardware or software synthesis for new OS/processors: targeting Linux in SCE

EE382V: Embedded Sys Dsgn and Modeling, Lecture 1

© 2014 A. Gerstlauer

Successful Past Projects

Modeling

- A. Abdel-Hadi, J. Michel, "Real-Time Optimization of Video Transmission in a Network of AAVs," VTC 2011.
- A. Pedram, C. Craven, T. Amimeur, "Modeling Cache Effects at the Transaction Level," *IESS* 2009 (best paper runner-up)
- A. Banerjee, "Transaction Level Modeling of Best Effort Channels for Networked Embedded Devices", IESS 2009.

Exploration and synthesis

- J. Lin, A. Srivatsa, "Heterogeneous Multiprocessor Mapping for Real-Time Streaming Systems," *ICASSP* 2011.
- S. Lee, K. Saleem, J. Li, "Fine Grain Word Length Optimization for Dynamic Precision Scaling in DSP Systems," VLSI-SoC 2013 (best paper candidate)

EE382V: Embedded Sys Dsgn and Modeling, Lecture 1

© 2014 A. Gerstlauer

23

Lecture 1: Outline

✓ Introduction

- √ Embedded systems
- √ System-level design

✓ Course information

- √ Topics
- √ Logistics
- √ Projects

Design methodology

- System-level design flow
- · Models and methodologies

EE382V: Embedded Sys Dsgn and Modeling, Lecture 1

© 2014 A. Gerstlauer

Design Methodology

- > Formalization of a design flow
 - Break into well-defined, repeatable steps
 - Set of models and transformations between them
 - Manual or automated
- Models
 - Design representations
 - Specification and documentation at interface between steps
- Transformations
 - Design decisions
 - Refine input model into an output model reflecting decisions

EE382V: Embedded Sys Dsgn and Modeling, Lecture 1

© 2014 A. Gerstlauer

Lecture 1: Summary

- ✓ Introduction
 - ✓ Embedded systems
 - ✓ System-level design
- ✓ Course information
 - ✓ Topics
 - √ Logistics
 - ✓ Projects
- ✓ Design methodology
 - √ System-level design flow
 - ✓ Models and methodologies

EE382V: Embedded Sys Dsgn and Modeling, Lecture 1

© 2014 A. Gerstlauer