Lecture 4 – System Specification

Andreas Gerstlauer
Electrical and Computer Engineering
University of Texas at Austin
gerstl@ece.utexas.edu

Lecture 4: Outline

- **System specification**
 - Essential issues
 - Specification modeling guidelines
 - C-to-SpecC recoding

- **Design example**
 - SUSAN edge detection specification
System Specification

- **System behavior**
 - Specification model

- **System constraints**
 - Non-functional requirements

Essential Issues in Specification

- **An Example ...**

 - Proposed by the project team
 - Product specification
 - Product design by senior analyst
 - Product after implementation
 - Product after acceptance by user
 - What the user wanted

Source: unknown author. Courtesy of: R. Doemer
Specification Model

- **Functional and executable**
 - “golden model” (first functional model in the design flow)
 - all other models will be derived from and compared to this one

- **High abstraction level**
 - no implementation details
 - unrestricted exploration of design space

- **Separation of communication and computation**
 - channels and behaviors

- **Pure functional**
 - no structural information

- **No timing**
 - exception: timing constraints

Specification Model

- **Top-level Main behavior**
 - Test bench
 - Stimulus provides test vectors
 - Monitor observes and checks outputs
 - no restrictions in syntax and semantics (no synthesis)
 - Design under test (DUT)
 - restricted by syntax and semantic rules (synthesis!)
Specification Modeling Guidelines

- **Computation: Behaviors**
 - Hierarchy: explicit concurrency, state transitions, ...
 - Granularity: leaf behaviors = smallest indivisible units
 - Encapsulation: localization, explicit dependencies
 - Concurrency: explicitly specified (par, pipe, fsm, seq, ...)
 - Time: un-timed, partial ordering

- **Communication: Channels**
 - Semantics: abstract communication, synchronization (standard channel library)
 - Dependencies: explicit data dependency, partial ordering, port connectivity

Example rules for SoC Environment (SCE)

- **Clean behavioral hierarchy**
 - hierarchical behaviors: no code other than seq, par, pipe, fsm statements
 - leaf behaviors: no SpecC code (pure ANSI-C code only)

- **Clean communication**
 - point-to-point communication via standard channels: c_handshake, c_semaphore, c_double_handshake, c_queue (typed or untyped)
 - ports of plain ANSI C type or interface type, no pointers!
 - port maps to local variables or ports only

Detailed rules for SoC Environment

"SCE Specification Model Reference Manual,“
by A. Gerstlauer, R. Doemer, CECS, UC Irvine, April 2005
Specification Modeling Guidelines

- **C code conversion to SpecC**
 - Functions become behaviors or channels
 - Functional hierarchy becomes behavioral hierarchy
 - Clean behavioral hierarchy required
 - if-then-else structure becomes FSM
 - while/for/do loops become FSM
- **Explicitly specify potential parallelism**
 - Task and data parallelism
- **Explicitly specify communication**
 - Avoid global variables
 - Use local variables and ports (signals, wires)
 - Use standard channels
- **Data types**
 - Avoid pointers, use arrays instead
 - Use explicit SpecC data types if suitable
 - Floating-point to fixed-point conversion

Lecture 4: Outline

- **System specification**
 - Essential issues
 - Specification modeling guidelines
 - C-to-SpecC recoding

- **Design example**
 - SUSAN edge detection specification
Image Edge Detection

- **Identifying points at which the brightness changes sharply**
 - Capture important events and changes

- **Edge sources (brightness changes)**
 - Discontinuities in depth
 - Discontinuities in surface orientation, and material properties
 - Variations in scene illumination

- **Application**
 - Computer vision
 - Industrial robots, autonomous vehicles or mobile robots, medical image analysis, etc.
 - Machine vision
 - Quality assurance, sorting, material handling, robot guidance, and optical gauging

- **Smallest Univalue Segment Assimilating Nucleus (SUSAN)**
 - Edge detection, corner detection and image noise reduction

Susan Edge Detector Specification

![Diagram of Susan Edge Detector Specification](image)
Lecture 4: Summary

• **System specification**
 • Specification modeling guidelines
 – Testbench setup
 – Hierarchy, concurrency, communication
 • Unambiguous, formal definition
 – Intended system behavior
 – Analysis and synthesis

➢ How to capture concurrency, order, time, …?
 ➢ Models of Computation!

• **Design example**
 • SUSAN

➢ Specification development in Lab 1