Lecture 7 – Estimation and Evaluation

Andreas Gerstlauer
Electrical and Computer Engineering
University of Texas at Austin
gerstl@ece.utexas.edu

Lecture 7: Outline

- Profiling
 - Source-level analysis
 - Retargeting

- Evaluation and estimation
 - Static analysis
 - Simulation
 - Hybrid methods
Design Space Exploration

- **Runtime vs. accuracy**
 - Fast design space exploration
 - Fidelity: relative accuracy (vs. absolute accuracy)

- **Capabilities**
 - Various levels of abstraction: components, system
 - Wide range of metrics: power, timing, area, reliability
 - Wide variety of target implementations

Design Space Exploration

- **Explore and trim**
 - Gradually prune design space

- **Exploration Space**
 - Profiling
 - Impl! independent simulation
 - One-time retargeting
 - Impl! dependent simulation/analysis

- **Time**
 - Profiling stage
 - Retargeting stage
 - Evaluation stage
Evaluation Flow

Refinement	Validation	Feedback
Spec model | Instrumentation | Spec characteristics
Simulation | | Design decision

Profiling

- **Input specification MoC**
 - Hierarchy
 - Computation & communication

- **Multi-dimensional analysis**
 - Multi-entities
 - Behavior, channel, port, variable
 - Multi-metrics
 - Operation, traffic, storage
 - Static, dynamic
 - Multi-levels
 - Application, transaction, bus-functional
Profiling

- **Instrumentation-based profiling**
 - \(B_b \): The execution counts of basic block \(b \)
 - Enumerate execution paths
 - \(C_{b,i,d} \): No. of computed characteristics for item type \(i \)
 and data type \(d \) in the block \(b \)
 - Data type \(i \): float, int, ...
 - Item type \(d \): metric-dependent

 \[R_{++,int} = \sum_i \left[B_i \cdot C_{i,++,int} \right] \]
 \[= 1 \cdot 1 + 3 \cdot 2 \]
 \[= 7 \]

- **Specification metrics**
 - \(R_{i,d} = \sum_b C_{b,i,d} B_b \)
 - \(R = \sum_d \sum_i R_{i,d} \)

Retargeting

- **Target machine model**
 - \(W_{i,d} \): weights of components which the entity mapped to
 - Manual
 - Simulation
 - Complex cost function/algorithm

- **Implementation estimates**
 - \(E = \sum_i \sum_d (R_{i,d} \cdot W_{i,d}) \)
 - Time complexity: \(O(n) \)

\[E(B1,PE1)_{++,int}= 7 \times 1 = 7 \]

Vocoder Profiling

Computational complexity of top-level Vocoder behaviors:

<table>
<thead>
<tr>
<th>Behavior</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP_Analysis</td>
<td>377.0 MOp</td>
</tr>
<tr>
<td>Open_Loop</td>
<td>337.1 MOp</td>
</tr>
<tr>
<td>Closed_Loop</td>
<td>478.7 MOp</td>
</tr>
<tr>
<td>Codebook</td>
<td>646.4 MOp</td>
</tr>
<tr>
<td>Update</td>
<td>43.6 MOp</td>
</tr>
</tbody>
</table>

Codebook operation mix:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x, int)</td>
<td>46.2%</td>
</tr>
<tr>
<td>(+, int)</td>
<td>33.5%</td>
</tr>
<tr>
<td>(-, int)</td>
<td>9.1%</td>
</tr>
<tr>
<td>(/, int)</td>
<td>7.1%</td>
</tr>
<tr>
<td>(others, int)</td>
<td>4.1%</td>
</tr>
</tbody>
</table>

Floating-point not required
Dedicated hardware multipliers
HW acceleration

Vocoder Design Space Exploration

- Mapping of 8 top-level encoder behaviors onto ColdFire + DSP + HW
- 85.04h for 6561 alternatives (1.7s simulation + 3s refinement each)
- 100% fidelity
Lecture 7: Outline

✓ Profiling
 ✓ Source-level analysis
 ✓ Retargeting

• Evaluation and estimation
 • Static analysis
 • Simulation
 • Hybrid methods

Evaluation and Estimation Methods

• Measurement
 • Fast (real time), exhaustive?
 • Requires physical implementation

• Analysis
 • Worst-case/best-case assumptions
 • Tightness of upper/lower bounds? Dynamic effects?

• Simulation
 • Speed vs. accuracy tradeoffs
 • Quality of testbench, corner cases?

Source: L. Thiele
Estimation Methods

- **Static analysis**
 - Symbolic, mathematical models for best/worst case
 - Worst-case execution time analysis (WCET)
 - Real-time scheduling

- **Probabilistic analysis**
 - Statistical models, distributions for “average” case
 - Queuing theory

- **Deterministic dynamic analysis**
 - Min-plus/max-plus algebra, upper/lower bounds over time
 - Network calculus
 - Real-time calculus
 - Modular Performance Analysis (MPA)

Static Code Analysis

- **Worst-case execution time (WCET)**
 - Micro-architecture analysis
 - Compute bounds for each basic execution block
 - Symbolically simulate statements on processor model (pipeline)
 - Conservative assumptions for dynamic effects (caches, predictors)
 - Path analysis
 - Enumerate possible paths and take maximum of block sequence
 - Possible paths often highly dynamic (loop bounds, false paths)
 - Basis for back-annotation or static system analysis
 - Combine static code analysis with dynamic system simulation
 - Static or dynamic model of inter-process cross-dependencies

Control/Data Flow Graph (CDFG)
Analytical System Evaluation

- Modular Performance Analysis (MPA)
 - Network calculus, real-time calculus (RTC)

Source: C. Haubelt, J. Teich, DATE '09 Tutorial

MPSoC Analysis with MPA

Source: C. Haubelt, J. Teich, DATE '09 Tutorial
Simulation

- Create stimuli and simulate model

 ![Simulation Diagram]

- **Inputs**
 - Specification
 - Used to create interesting stimuli and monitors (golden output)
 - Model of DUT
 - Typically written in HDL or C or both

- **Output**
 - Failed test vectors (validation)
 - Quality metrics (evaluation)

 ➢ **Speed vs. accuracy**
 ➢ Fundamental tradeoff

Hybrid System-Level Methods

- **Static timing back-annotation**
 - Analytical one-time estimation
 - Instructions, basic blocks or functions
 - Timing, energy, …

- **Dynamic system simulation**
 - System description language
 - Simulation host
 - Functionality & timing/power/…
 - Generate trace

- **Timing analysis**
 - Latency, throughput, response time, etc.

Source: C. Haubelt, J. Teich
Trace-Driven Simulation

- **Drive simulation via pre-existing, static traces**
 - Traces for system block behavior
 - Traces obtained from fast functional-only simulation

- **Examples**
 - Trace-driven simulation
 - Arrival curve extraction from traces
 - Trace generation from arrival curves

Source: C. Haubelt, J. Teich, DATE '09 Tutorial

Lecture 7: Summary

- **Source-level profiling**
 - Early pruning and exploration

- **Static analysis**
 - Worst/best/average case bounds
 - Tightness of bounds?
 - Execution time analysis of single task
 - Real-time calculus for concurrent systems
 - Max-plus algebra

- **Simulation**
 - Host-compiled system-level simulation
 - Fast and accurate, no guarantees