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Lecture 8: Outline

• Automated decision making

• Problem formulation

• Optimization approaches

• Partitioning & scheduling

• Traditional hardware/software co-design

• System-level design

• Design space exploration

• Multi-objective optimization

• Exploration algorithms
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System-Level Synthesis
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Automated Decision Making

• Map specification onto architecture
• Functionality + constraints  structure + metrics

• Synthesis tasks
• Allocation

– Select resources from a platform/architecture template (database)

• Binding
– Map processes onto allocated computational resources
– Map variables onto allocated storage units
– Route channels over busses, gateways and address spaces

• Scheduling
– Determine order of processes bound to the same resource
– Determine order of transaction routed over the same (arbitration)

Partitioning = (allocation +) binding
Mapping = (allocation +) binding + scheduling

Formalization of decision making process
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Example (1)

• Basic model with a task graph MoC and static scheduling

• Task graph = homogeneous, acyclic SDF

Problem graph GP(VP,EP):

1 2

3

4

5 6

7

Interpretation:

• VP consists of functional

nodes VP
f (task, proce-

dure) and communication

nodes VP
c .

• EP represent data depend-
encies

Application task graph GP(VP, EP)

Source: L. Thiele
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Example (2)

Architecture graph GA(VA,EA):

• VA consists of functional resources VA
f (RISC, ASIC) and

bus resources VA
c. These components are potentially allo-

catable.
• EA model directed communication.

RISC HWM1

HWM2

shared
bus

PTP bus

RISC HWM1

HWM2

shared bus PTP bus

Architecture Architecture graph

Source: L. Thiele
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Example (3)

1

2

3

4

5

6

7

RISC

HWM1

HWM2

SB

PTP

GP EM GA

Definition: A specifica-
tion graph is a graph
GS=(VS,ES) consisting
of a problem graph GP,
an architecture graph
GA, and edges EM. In
particular, VS=VPVA,
ES=EPEAEM

Source: L. Thiele

(mapping constraint)

EE382V: Embedded Sys Dsgn and Modeling, Lecture 8 © 2014 A. Gerstlauer 8

Example (4)

Three main tasks of synthesis:

• Allocation  is a subset of VA.

• Binding  is a subset of EM, i.e., a mapping of functional
nodes of VP onto resource nodes of VA.

• Schedule  is a function that assigns a number (start time) to
each functional node.

Source: L. Thiele
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Example (5)

Definition: Given a
specification graph GS
an implementation is a
triple (,,), where 
is a feasible allocation,
 is a feasible binding,
and  is a schedule.

1

2

3

4

5

6

7

RISC

HWM1

SB

1

0

8

1

20

1

2





0

1

21

30

1

21

29

 RISC HWM1

HWM2

shared
bus

PTP bus

Source: L. Thiele

Optimization

 Decision making under optimization objectives
• Single- vs. multi-objective optimization
• Couple with refinement for full synthesis

• General optimization formulation
• Decision variables: x ∈ Domain
• Constraints: gi(x) ≤ Gi, hj(x) = Hj

• Objective function: f(x): Domain → Թ
• Single-objective optimization problem:

min
௫
݂ ݔ 		subject	to	݃௜ ݔ ൑ ,௜ܩ ௝݄ ݔ ൌ ௝ܪ

• System-level optimization
• Allocation (α), binding (β), scheduling (τ) decisions
• Under functional and non-functional constraints/objectives

– Architecture & mapping constraints (GA, Em)
– Design quality constraints & objectives
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Cost Functions

• Measure quality of a design point as optimization objective
• May include C … system cost in [$]

L … latency in [sec]
P… power consumption in [W]

• Example: linear weighted cost function with penalty 

• hC , hL , hP … denote how strong C, L, P violate the design 
constraints Cmax, Lmax, Pmax

• k1 , k2 , k3 …  weighting and normalization

• Requires estimation or evaluation to find C, L, P

• Analytical quality/cost model (estimation)

• Refinement + simulation (evaluation)

f(C, L, P) = k1·hC(C,Cmax) + k2·hL(L,Lmax) + k3·hP(P,Pmax)

Source: L. Thiele
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Optimization Methods
• Exact (optimal) methods 

• Enumeration, exhaustive search
• Convex optimizations
• (Integer) linear programming
 Prohibitive for exponential problems (large design spaces)

• Heuristics (non-optimal)
• Constructive

– Random assignment, list schedulers

• Iterative
– Random search, simulated annealing

• Set-based iterative
– Evolutionary/genetic Algorithms (EA/GA), Particle Swarm 

Optimization (PSO), Ant Colony Optimization (ACO)
Multi-objective optimization (MOO), Design space exploration (DSE)

 Exact & constructive methods imply analytical cost models
Source: C. Haubelt, J. Teich
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Lecture 8: Outline

 Automated decision making

Problem formulation

Optimization approaches

• Partitioning & scheduling

• Traditional hardware/software co-design

• System-level design

• Design space exploration

• Multi-objective optimization

• Exploration algorithms
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Partitioning

• The partitioning problem is to assign n objects 
O = {o1, ..., on} to m blocks (also called partitions) 
P = {p1, ..., pm}, such that 

• p1 p2  ... pm = O

• pi  pj = { }  i,j: i j and

• cost c(P) is minimized

 In system-level design:

• oi = processes/actors

• pj = processing elements (hardware/software processors)

• c(P) = ∑ cost of processor pj (zero if unused) and/or
communication cost between partitions

• Constrain processor load and/or fixed number of partitions

 Bin packing and/or graph partitioning (both NP-hard)
Source: L. Thiele
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Scheduling

V1 V2 V4V3

t

G=(V,E)

Dt



• Assume that we are given a specification graph G=(V,E)

• A schedule  of G is a mapping V  Dt of a set of tasks V
to start times from domain Dt, such that none overlap

 In system-level design:
• Static vs. dynamic vs. quasi-static (static order)
• Preemptive vs. non-preemptive (atomic)
• Optimize throughput (rate of G), latency (makespan of G)
• Resource, dependency, real-time (deadline) constraints
 Implicit or explicit multi-processor partitioning (NP-hard)

Source: P. Marwedel
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Hardware/Software Co-Design (1)

 Limited target architecture model

• Single CPU plus N hardware accelerators/co-processors

• Often limited to single optimization objective
– Minimize cost under performance constraints

– Maximize performance under resource constraints

 Classical approaches for partitioning & scheduling

• Constructive or iterative HW/SW partitioning

• Hierarchical clustering, Kernighan-Lin (min-cut)
– Minimize notion of communication cost between partitions

• Simulated annealing
– Generic optimization approach

Extends to multi-processor system-level design

• …
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Hardware/Software Co-Design (2)
• Uni-processor scheduling 

• General-purpose OS schedulers
– Balance average performance, fairness, responsiveness

• Exact real-time scheduling methods
– RMS, EDF for independent periodic real-time task sets

» Schedulability (maximize utilization while guaranteeing deadlines)

– EDD, EDF for independent aperiodic real-time task sets

– LDF, EDF* for dependent (real-time) task graphs
» Minimize maximal lateness (response time minus deadline)

– Mix of (hierarchical) schedulers for indep. concurrent task graphs

 Throughput/makespan fixed, minimize latency (= meet deadlines)

Analytical cost models based on estimated task execution times

• KPN, SDF scheduling of generalized task graphs
– Constructive methods, focus on buffer/code sizing, completeness, ..

 Hardware accelerators as special cases

 Extensions for (homogeneous) multi-cores
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Multi-Processor Systems-on-Chip (MPSoCs)

• Multi-processor
• Heterogeneous
• Asymmetric multi-

processing (AMP)
• Distributed memory 

& operating system

• Multi-core
• Heterogeneous or homogeneous or identical
• Symmetric multi-processing (SMP)
• Shared memory & operating system
Multi-core processors in a multi-processor system

• Many-core
• > 10 processors/cores …
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Multi-Processor Mapping
• Partitioning

• Possible extensions of classical two-partition approaches
– Min-cut, clustering, annealing

 Truly parallel execution (not just accelerators)
– Need to consider effect on scheduling

• Scheduling
• Multi-core scheduling (SMP)

– Tasks can migrate (frequency? 
overhead? cache pollution?)

Real-time extensions
• Exact global P-fair scheduling for 

indep. periodic task sets 
• Partitioned/global EDF heuristics for 

indep./dep. task sets

 True multi-processor scheduling (AMP)
– General (dependent/aperiodic) tasks

with or without migration (NP-hard)
 Integrated partitioning & scheduling

Global queue (+ affinity)

Partitioned queue (+ load balancing)
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Multi-Processor Mapping Formulations (1)

• Models of computation
• Set of tasks (processes/actors) { T1, T2, … }

– Independent
– Task graph = data-flow/precedence graph (DFG/HSDF)

= directed, acylic graph (DAG) 
– Generalized task models (KPN, SDF)

• Timed models
– Arrival/release times ai (periods ti), soft/hard deadlines di (= ti )

• Models of Architecture
• Set of processing elements (processors) { P1, P2, … }

– Number and type fixed, constrained, or flexible
– With or without migration, homogeneous or heterogeneous

• Set of communication media (busses) { B1, B2, … }
– Shared, point-to-point, fully connected

• Set of storage elements (memories) { M1, M2, … }
– Shared, distributed
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Multi-Processor Mapping Formulations (2)

• Optimization problems
• Cost models

– Analytical: execution times ei (best/worst/average?), real-time calc.
– Simulation (dynamic scheduling, timing variations)

• Objectives/constraints
– Latency: response time ri = finish time fi – ai, lateness li = ri - di

– Throughput: 1 / makespan (schedule length)
– Cost: chip area, code/memory size, …

 Examples (all at least NP-complete):
• General job-shop scheduling

– Minimize makespan of independent task set on m processors
– Classical multi-processor scheduling: atomic jobs, no migration

• General DAG/DFG scheduling
– Minimize makespan for dependent task graph on m resources
– Minimize resources under makespan constraint
– Pipelined variants for periodic task graph invocations

• KPN, SDF scheduling
– Optimize latency, throughput, buffers, cost, … under x constraints

Multi-Processor Mapping Approaches

• Exact methods

• Integer linear programming (ILP)

• Constructive heuristics

• List schedulers to minimize latency/makespan
– Hu’s algorithm as optimal variant for uniform tasks & resources 

• Force-directed schedulers to minimize resources

• Generic iterative heuristics

• Simulated annealing

 Set-based multi-objective DSE approaches

 Many of these adapted from other domains

 DAG/DFG scheduling in compilers & high-level synthesis

 Production planning, operations research, …

EE382V: Embedded Sys Dsgn and Modeling, Lecture 8 © 2014 A. Gerstlauer 22
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Integer Linear Programming

Def.: The problem of minimizing (1) subject to the constraints 
(2) is called an integer linear programming (ILP) problem.

If all xi are constrained to be either 0 or 1, the ILP problem said 
to be a 0/1 (or binary) integer linear programming problem. 
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• Linear expressions over integer variables

• Cost function

• Constraints

Source: L. Thiele
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Integer Linear Program for Partitioning (1)

• Inputs
• Tasks ti, 1 ≤ i ≤ n
• Processors pk, 1 ≤ k ≤ m
• Cost ci,k , if task ti is in processor pk

• Binary variables xi,k

• xi,k = 1: task ti in block pk

• xi,k = 0: task ti not in block pk

• Integer linear  program:
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Source: L. Thiele
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Integer Linear Program for Partitioning (2)

• Additional constraints
• example: maximum number of hk objects in block k

• Popular approach
• Various additional constraints can be added
• If not solving to optimality, run times are acceptable and a 

solution with a guaranteed quality can be determined
• Can provide reference to provide optimality bounds of 

heuristic approaches
• Finding the right equations to model the constraints is an 

art… (but good starting point to understand a problem)
 Static scheduling can be integrated (SDFs)

mkhx
n

i
kki 


1

1
,

Source: L. Thiele

Integer Linear Program for Scheduling
• Task graph model

• Time window: 0 ≤ l ≤ T

• Execution time ei,k of task ti on processor pk

• Cost ci,k , if task ti is in processor pk

• Decision variables

• si,l ∈ {0,1}: task ti starts at time l

• xi,k ∈ {0,1}: task ti in processor pk

• Constraints

• Single task execution: ∑l si,l = 1,   1 ≤ i ≤ n

• Unique mapping of tasks to processors: ∑k xi,k = 1,  1 ≤ i ≤ n

• Non-overlapping execution on each processor:
∑ ∑ ௜,௞ݔ ∙ ௜,ఛݏ

௟
ఛୀ௟ି௘೔,ೖାଵ௜ , 1 ≤ k ≤ m, 0 ≤ l ≤ T

• Task dependencies ti →tj : ∑l l·sj,l ≥  ∑l l·si,l + ∑k xi,k ·ei,k

• Objective

• Weighted cost & latency: w1(∑i∑k ci,k ·xi,k) + w2(∑l l·sn,l+∑k xn,k ·en,k )

EE382V: Embedded Sys Dsgn and Modeling, Lecture 8 © 2014 A. Gerstlauer 26
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• Allocation and partitioning
• Resource sharing

• Static scheduling
• Pipelining

Throughput   = 1 / Period
Latency = (End of the n-th exec. of sink) – (Start of the n-th exec. of source)

SDF Mapping

J. Lin, A. Srivasta, A. Gerstlauer, B. Evans, "Heterogeneous Multiprocessor Mapping for Real-time Streaming Systems,“ ICASSP’11
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Partitioning & Scheduling ILP (1)

• Multi-objective cost function
• Minimize: w1·Throughput + w2·Latency + w3·Cost

• Decision variables
• Actor to processor binding 
• Actor start times

• Constraints
• Execution precedence according to SDF semantics
• Unique actor mapping
• Processor-dependent actor execution times
• Sequential execution on each processor
• Stable periodic phase

 Optimize partition and schedule simultaneously

J. Lin, A. Srivasta, A. Gerstlauer, B. Evans, "Heterogeneous Multiprocessor Mapping for Real-time Streaming Systems,“ ICASSP’11
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Partitioning & Scheduling ILP (2)

• ILP formulation of multi-processor SDF mapping

• Inputs
– Time window: 0 ≤ t ≤ T

– Repetition vector: number of executions ri for actor i

– Production and consumption rates on edge i1->i2: ci1,i2, pi1,i2

– Initial tokens on edge i1->i2: oi1,i2

– Execution time of actor i on processor j: di,j

– Cost of processor j: pcj

• Decision variables
– : Actor i mapped to processor j

– : Number of started/ended executions of actor i till time t

– : Indicator for start of periodic phase

• Helper variables
– : number of executions of i at time t

– : step function indicating first start of i in stable phase

}1,0{, jiA
)(),( tEtS ii

)(tstart

 


t

iii EStW
0

))()(()(




J. Lin, A. Srivasta, A. Gerstlauer, B. Evans, "Heterogeneous Multiprocessor Mapping for Real-time Streaming Systems,“ ICASSP’11

)(tFi
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Partitioning & Scheduling ILP (3)

• ILP formulation of multi-processor SDF mapping (cont’d)

• Constraints

– Unique actor mapping:

– Actor execution time:

– Token balance equations:

– Sequential (non-overlapping) execution:

– Periodicity of schedule:

• Objectives

– Period =

– Cost = 

– Latency =  

1,  j jiA

 
j jiijii dtEAtS )()( ,,

2,112,122,1 )()( iiiiiiii otEptSc 

 
i iiji tEtSA 1))()((,

 
t j jijiiii dArtstarttWTW ,,)()()(

 
t

tstarttT )(

 
j jj pcAlloc

PeriodTSTSdAtFtF Ij jIjIt I   ))()(())()(( 1,,1

Time interval between source’s 1st start 
and sink’s 1st end in the periodic phase

Difference in iteration 
numbers

J. Lin, A. Srivasta, A. Gerstlauer, B. Evans, "Heterogeneous Multiprocessor Mapping for Real-time Streaming Systems,“ ICASSP’11
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SDF Mapping Optimizations

• Integer Linear Programming (ILP) formulation
• Optimal, but single solution only and exponential

 Heuristics
• Maximum throughput partition

– For fixed partition, the best throughput is 
determined by the critical processor

– Best throughput achievable if acyclic SDF or
enough initial tokens

• Two-stage ILP optimization process

 Throughput and cost are prioritized over latency

 Integrate communication model
 J. Lin, A. Gerstlauer, B. Evans, “Communication-aware Heterogeneous 

Multiprocessor Mapping for Real-time Streaming Systems,” JSP’12

Critical 
processor

Multi-Processor Mapping Approaches

• Exact methods

• Exhaustive search

• Integer linear programming (ILP)

• Constructive heuristics

• Random mapping

• List schedulers to minimize latency/makespan
– Hu’s algorithm as optimal variant for uniform tasks & resources 

• Force-directed schedulers to minimize resources

• Generic iterative heuristics

• Random search

• Iterative improvement/hill climbing

• Simulated annealing

EE382V: Embedded Sys Dsgn and Modeling, Lecture 8 © 2014 A. Gerstlauer 32
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Constructive Methods – List Scheduling
• Greedy heuristic

• Process graph in topology order (source to sink)

• Process ready nodes in order of priority (criticality)

 List scheduling variants only differ in priority function
– Highest level first (HLF), i.e. distance to the sink

– Critical path, i.e. longest path to the sink

• Widely used scheduling heuristic

• Operation scheduling in compilation & high-level synthesis
• Hu’s algorithm for uniform delay/resources (HLF, optimal)

• Iterative modulo scheduling for software pipelining

• Job-shop/multi-processor scheduling
• Graham’s algorithm (optimal online algorithm for ≤ 3 processors)

• Heterogeneous earliest-finish time first (HEFT)

 Natural fit for minimizing makespan/latency
O(n) complexity

Constructive Methods – List Scheduling

EE382V: Embedded Sys Dsgn and Modeling, Lecture 8 © 2014 A. Gerstlauer 34

l = 0;

i = 0…n: pi ← Idle;

Ready ← Initial tasks (no dependencies);

while (!empty(Ready)) {

forall pi: status(pi) == Idle {

t = first(Ready, pi);  // by priority

pi ← (t, l, l + exec_time(t));

}

l = min(l + 1, finish_time(pi));

forall pi: finish_time(pi) == l {

Ready ← successors(current(pi));

pi ← Idle;

}

}



EE382V: Embedded Sys Dsgn and 
Modeling

Lecture 8

© 2014 A. Gerstlauer 18

Multi-Processor Mapping Approaches

• Exact methods

• Exhaustive search

• Integer linear programming (ILP)

• Constructive heuristics

• Random mapping

• List schedulers to minimize latency/makespan
– Hu’s algorithm as optimal variant for uniform tasks & resources 

• Force-directed schedulers to minimize resources

• Generic iterative heuristics

• Random search

• Iterative improvement/hill climbing

• Simulated annealing
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Iterative Methods

• Basic principle

• Start with some initial configuration (e.g. random)

• Repeatedly search neighborhood (similar configuration)
– Select neighbor as candidate (make a move)

• Evaluate fitness (cost function) of candidate
– Accept candidate under some rule, select another neighbor

• Stop if quality is sufficient, no improvement, or end time

• Ingredients

• Way to create an initial configuration

• Function to find a neighbor as next candidate (make move)

• Cost function (single objective)
– Analytical or simulation

• Acceptance rule, stop criterion

 No other insight into problem needed
EE382V: Embedded Sys Dsgn and Modeling, Lecture 8 © 2014 A. Gerstlauer 36

Source: L. Thiele
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Iterative Improvement

• Greedy “hill climbing” approach

• Always and only accept if cost is lower (fitness is higher)

• Stop when no more neighbor (move) with lower cost

• Disadvantages

• Can get trapped in local optimum as best result
– Highly dependent on initial configuration

• Generally no upper bound on iteration length

 How to cope with disadvantages?

• Repeat with many different initial configurations

• Retain information gathered in previous runs

• Use a more complex strategy to avoid local optima

 Random moves & accept cost increase with probability > 0

EE382V: Embedded Sys Dsgn and Modeling, Lecture 8 © 2014 A. Gerstlauer 37

Source: L. Thiele
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Iterative Methods - Simulated Annealing

• From Physics
• Metal and gas take on a minimal-energy state during 

cooling down (under certain constraints)
– At each temperature, the system reaches a thermodynamic 

equilibrium
– Temperature is decreased (sufficiently) slowly

• Probability that a particle “jumps” to a higher-energy state: 

• Application to combinatorial optimization
• Energy = cost of a solution (cost function)

– Can use simulation or any other evaluation model (KPN, DDF, …)

• Iteratively decrease temperature
– In each temperature step, perform random moves until equilibrium
– Sometimes (with a certain probability) increases in cost are 

accepted.
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Source: L. Thiele
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Iterative Methods - Simulated Annealing

temp = temp_start;

cost = c(P);

while (Frozen() == FALSE) {

while (Equilibrium() == FALSE) {

P’ = RandomMove(P);

cost’ = c(P’);

deltacost = cost’ - cost;

if (Accept(deltacost, temp) > random[0,1)) {

P = P’;

cost = cost’;

}

}

temp = DecreaseTemp (temp);

}

tempk

deltacost

etempdeltacost 


),Accept(

Source: L. Thiele
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Iterative Methods - Simulated Annealing

• Random moves: RandomMove(P)
• Choose a random solution in the neighborhood of P

• Cooling Down: DecreaseTemp(), Frozen()
• Initialize: temp_start = 1.0
• DecreaseTemp: temp =  • temp    (typical: 0.8    0.99)
• Terminate (frozen): temp < temp_min or no improvement

• Equilibrium: Equilibrium()

• After defined number of iterations or when there is no more 
improvement

 Complexity

• From exponential to constant, depending on the 
implementation of the cooling down/equilibrium functions

• The longer the runtime, the better the quality of results
Source: L. Thiele
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Lecture 8: Outline

 Automated decision making

Problem formulation

Optimization approaches

 Partitioning & scheduling

Traditional hardware/software co-design

System-level design

• Design space exploration

• Multi-objective optimization

• Exploration algorithms
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Multi-Objective Exploration

• Multi-objective optimization (MOO)

• In general, several solutions (implementations) exist with 
different properties, e.g., area and power consumption, 
throughput, etc.

• Implementations are often optimized with respect to many 
(conflicting) objectives

• Finding best implementations is task of multi-objective 
optimization

 Exact, constructive & iterative methods are prohibitive

 Large design space, multiple objectives, dynamic behavior

 Set-based iterative approaches (EA, ACO, PSO)

 Randomized, problem independent (black box)

 Often inspired by processes in nature 
(evolution, ant colonies, diffusion)

Source: C. Haubelt, J. Teich
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Source: C. Haubelt, J. Teich
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incomparable

incomparable

is
dominated

dominates

Pareto Dominance

• Given: two decision vectors x1 and x2

• x1≻≻x2 (strongly dominates) if ∀i: fi(x1)<fi(x2)
• x1≻x2 (dominates) if ∀i: fi(x1)≤fi(x2) ∧ ∃j: fj(x1)<fj(x2)
• x1~x2 (indifferent) if ∀i: fi(x1)=fi(x2)
• x1||x2 (incomparable) if ∃i,j: fi(x1)<fi(x2) ∧ fj(x2)<fj(x1)
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Source: C. Haubelt, J. Teich
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Pareto Optimality

• Set of all solutions X

• A decision vector x ∊ X is said to be Pareto-optimal
if ∄y ∊ X: y ≻ x
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Pareto front

Source: C. Haubelt, J. Teich
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Optimization Goals

• Find Pareto-optimal solutions (Pareto front)

• Or a good approximation (convergence, diversity)

• With a minimal number of iterations
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Design Space Exploration (DSE)

• Search space vs. decision space vs. design space

• Encoding of decisions defines search space
– Focus on observable decisions, hardcode unobservable ones

» No observable effect on design quality, e.g. address mappings

• Functional & architecture constraints define decision space
– Quickly prune & reject infeasible decisions 

» Smart encoding, avoid during construction, attach large quality penalty 

• Quality constraints restrict objective space
– Invalid solutions outside of valid quality range
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Valid Region

Feasible Region

Search Space Decision Space Objective Space

decisions

Decoding
and setting of
unobservable

Functional Constraints Non-Functional Constraints

Evaluation

Encoding of 
decisions
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Design Space Exploration (DSE)

• Design Space Exploration is an iterative process

• How can a single design point be evaluated?
– Most DSE approaches rely on simulation-based cost models

• How can the design space be covered during the 
exploration process?

Covering the 
design space

(Decision making)

Evaluating 
design points
(Refinement)

Source: C. Haubelt, J. Teich, Univ. of Erlangen-Nuremberg
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Design Space Exploration (DSE)

• Multi-objective evolutionary algorithms (MOEAs)

• Capable to explore the search space very fast, i.e., they 
can find some good solutions after a few iterations 
(generations)

• Explore high dimensional search spaces

• Can solve variety of problems (discrete, continuous, …)

• Work on a population of individuals in parallel

• Black box optimization (generic evaluation model)

• Fitness evaluation

• Simulation, analysis or hybrid
– Tradeoff between accuracy and speed

• Hierarchical optimization
– Combination with second-level optimization

Source: C. Haubelt, J. Teich
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Source: C. Haubelt, J. Teich
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Fitness Selection

1

2 3
4

• Pareto ranking

Source: C. Haubelt, J. Teich
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Recombination
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Source: C. Haubelt, J. Teich
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Hierarchical Optimization 

• SDF mapping heuristics

• Multi-objective evolutionary algorithm (MOEA) + ILP
– Partitioning + scheduling
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Evolutionary Algorithm Evaluation
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SDF Mapping Heuristics

• MOEA with Scheduling ILP

Single Solution Pareto Front

J. Lin, A. Srivasta, A. Gerstlauer, B. Evans, "Heterogeneous Multiprocessor Mapping for Real-time Streaming Systems,“ ICASSP’11
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• Run-time comparison

• Artificial cyclic/acyclic SDF graphs mapped to 3 processors

SDF Mapping Results (1)

J. Lin, A. Srivasta, A. Gerstlauer, B. Evans, "Heterogeneous Multiprocessor Mapping for Real-time Streaming Systems,“ ICASSP’11
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SDF Mapping Results (2)

• Design space exploration for an MP3 decoder

• Convergence to Pareto front

• Within 10-6 of optimum

• 12x better runtime
– <1 hour execution time

J. Lin, A. Srivasta, A. Gerstlauer, B. Evans, "Heterogeneous Multiprocessor Mapping for Real-time Streaming Systems,“ ICASSP’11



EE382V: Embedded Sys Dsgn and 
Modeling

Lecture 8

© 2014 A. Gerstlauer 29

EE382V: Embedded Sys Dsgn and Modeling, Lecture 8 © 2014 A. Gerstlauer 57

Lecture 8: Summary

• Multi-Processor Mapping

• Formalization as a basis for automation
– Partitioning (allocation, binding) & scheduling

– General optimization problems

• Classical HW/SW co-design approaches
– Single processor + co-processors

– Real-time scheduling theory

• Multi-processor mapping heuristics
– ILPs, list scheduling, simulated annealing

• Design space exploration (DSE)
– Multi-objective optimization (MOO)

– Set-based iterative methods: MOEAs


