EE382V: Embedded System Design and Modeling

Lecture 8 – Mapping & Exploration

Andreas Gerstlauer
Electrical and Computer Engineering
University of Texas at Austin

gerstl@ece.utexas.edu

Lecture 8: Outline

- Automated decision making
 - · Problem formulation
 - · Optimization approaches
- Partitioning & scheduling
 - Traditional hardware/software co-design
 - · System-level design
- Design space exploration
 - Multi-objective optimization
 - Exploration algorithms

EE382V: Embedded Sys Dsgn and Modeling, Lecture 8

© 2014 A. Gerstlauer

2

Automated Decision Making

- Map specification onto architecture
 - Functionality + constraints ⇒ structure + metrics
- Synthesis tasks
 - Allocation
 - Select resources from a platform/architecture template (database)
 - Binding
 - Map processes onto allocated computational resources
 - Map variables onto allocated storage units
 - Route channels over busses, gateways and address spaces
 - Scheduling
 - Determine order of processes bound to the same resource
 - Determine order of transaction routed over the same (arbitration)
 - Partitioning = (allocation +) binding
 - Mapping = (allocation +) binding + scheduling

> Formalization of decision making process

EE382V: Embedded Sys Dsgn and Modeling, Lecture 8

© 2014 A. Gerstlauer

4

Example (1)

- Basic model with a task graph MoC and static scheduling
 - Task graph = homogeneous, acyclic SDF

Application task graph $G_P(V_P, E_P)$

Interpretation:

- V_P consists of functional nodes V_P^f (task, procedure) and communication nodes V_P^c.
- E_P represent data dependencies

Source: L. Thiele

EE382V: Embedded Sys Dsgn and Modeling, Lecture 8

© 2014 A. Gerstlauer

.

Example (2)

Architecture graph $G_A(V_A, E_A)$:

shared bus

HWM2

Architecture graph

 V_A consists of functional resources V_A^f (RISC, ASIC) and bus resources V_A^c. These components are potentially allocatable.

• E_A model directed communication.

Source: L. Thiele

EE382V: Embedded Sys Dsgn and Modeling, Lecture 8

© 2014 A. Gerstlauer

6

Example (4)

Three main tasks of synthesis:

- Allocation α is a subset of V_A .
- Binding β is a subset of E_M , i.e., a mapping of functional nodes of V_P onto resource nodes of V_A .
- Schedule τ is a function that assigns a number (start time) to each functional node.

Source: L. Thiele

EE382V: Embedded Sys Dsgn and Modeling, Lecture 8

© 2014 A. Gerstlauer

8

Optimization

Decision making under optimization objectives

- · Single- vs. multi-objective optimization
- Couple with refinement for full synthesis

General optimization formulation

• Decision variables: $x \in Domain$

• Constraints: $g_i(x) \le G_i, h_j(x) = H_j$

• Objective function: f(x): Domain $\to \mathbb{R}$

· Single-objective optimization problem:

 $\min_{x} f(x)$ subject to $g_i(x) \le G_i$, $h_j(x) = H_j$

System-level optimization

- Allocation (α), binding (β), scheduling (τ) decisions
- Under functional and non-functional constraints/objectives
 - Architecture & mapping constraints (G_A, E_m)
 - Design quality constraints & objectives

EE382V: Embedded Sys Dsgn and Modeling, Lecture 8

© 2014 A. Gerstlauer

10

Cost Functions

Measure quality of a design point as optimization objective

May include

C ... system cost in [\$]

L ... latency in [sec]

P... power consumption in [W]

Example: linear weighted cost function with penalty

$$f(C, L, P) = k_1 \cdot h_C(C, C_{max}) + k_2 \cdot h_L(L, L_{max}) + k_3 \cdot h_P(P, P_{max})$$

- h_C , h_L , h_P ... denote how strong C , L , P violate the design constraints C_{max} , L_{max} , P_{max}
- k_1 , k_2 , k_3 ... weighting and normalization
- Requires estimation or evaluation to find C, L, P
 - Analytical quality/cost model (estimation)
 - Refinement + simulation (evaluation)

Source: L. Thiele

EE382V: Embedded Sys Dsgn and Modeling, Lecture 8

© 2014 A. Gerstlauer

11

Optimization Methods

- · Exact (optimal) methods
 - · Enumeration, exhaustive search
 - Convex optimizations
 - (Integer) linear programming
 - Prohibitive for exponential problems (large design spaces)
- Heuristics (non-optimal)
 - Constructive
 - Random assignment, list schedulers
 - Iterative
 - Random search, simulated annealing
 - Set-based iterative
 - Evolutionary/genetic Algorithms (EA/GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO)
 - ➤ Multi-objective optimization (MOO), Design space exploration (DSE)

> Exact & constructive methods imply analytical cost models

Source: C. Haubelt, J. Teich

EE382V: Embedded Sys Dsgn and Modeling, Lecture 8

© 2014 A. Gerstlauer

12

Lecture 8: Outline

- ✓ Automated decision making
 - ✓ Problem formulation
 - ✓ Optimization approaches
- Partitioning & scheduling
 - Traditional hardware/software co-design
 - System-level design
- Design space exploration
 - Multi-objective optimization
 - Exploration algorithms

EE382V: Embedded Sys Dsgn and Modeling, Lecture 8

© 2014 A. Gerstlauer

13

Partitioning

- The partitioning problem is to assign n objects $O = \{o_1, ..., o_n\}$ to m blocks (also called partitions) $P = \{p_1, ..., p_m\}$, such that
 - $p_1 \cup p_2 \cup ... \cup p_m = 0$
 - $p_i \cap p_j = \{\} \ \forall i,j: i \neq j \text{ and }$
 - cost c(P) is minimized
- > In system-level design:
 - o_i = processes/actors
 - p_j = processing elements (hardware/software processors)
 - c(P) = ∑ cost of processor p_j (zero if unused) and/or communication cost between partitions
 - Constrain processor load and/or fixed number of partitions
 - ➤ Bin packing and/or graph partitioning (both NP-hard)

rce: L. Thiele

EE382V: Embedded Sys Dsgn and Modeling, Lecture 8 $\,$

© 2014 A. Gerstlauer

14

Scheduling

- Assume that we are given a specification graph G=(V,E)
- A schedule τ of G is a mapping $V \to D_t$ of a set of tasks V to start times from domain D_t , such that none overlap

- > In system-level design:
 - Static vs. dynamic vs. quasi-static (static order)
 - Preemptive vs. non-preemptive (atomic)
 - Optimize throughput (rate of G), latency (makespan of G)
 - Resource, dependency, real-time (deadline) constraints
 - Implicit or explicit multi-processor partitioning (NP-hard)

Source: P. Marwedel

EE382V: Embedded Sys Dsgn and Modeling, Lecture 8

© 2014 A. Gerstlauer

1

Hardware/Software Co-Design (1)

- Limited target architecture model
 - Single CPU plus N hardware accelerators/co-processors
 - Often limited to single optimization objective
 - Minimize cost under performance constraints
 - Maximize performance under resource constraints
 - Classical approaches for partitioning & scheduling
- Constructive or iterative HW/SW partitioning
 - Hierarchical clustering, Kernighan-Lin (min-cut)
 - Minimize notion of communication cost between partitions
 - Simulated annealing
 - Generic optimization approach
 - > Extends to multi-processor system-level design

• ...

EE382V: Embedded Sys Dsgn and Modeling, Lecture 8

© 2014 A. Gerstlauer

16

Hardware/Software Co-Design (2)

- Uni-processor scheduling
 - General-purpose OS schedulers
 - Balance average performance, fairness, responsiveness
 - Exact real-time scheduling methods
 - RMS, EDF for independent periodic real-time task sets
 - » Schedulability (maximize utilization while guaranteeing deadlines)
 - EDD, EDF for independent aperiodic real-time task sets
 - LDF, EDF* for dependent (real-time) task graphs
 - » Minimize maximal lateness (response time minus deadline)
 - Mix of (hierarchical) schedulers for indep. concurrent task graphs
 - > Throughput/makespan fixed, minimize latency (= meet deadlines)
 - > Analytical cost models based on estimated task execution times
 - · KPN, SDF scheduling of generalized task graphs
 - Constructive methods, focus on buffer/code sizing, completeness, ..
 - ➤ Hardware accelerators as special cases
 - Extensions for (homogeneous) multi-cores

EE382V: Embedded Sys Dsgn and Modeling, Lecture 8

© 2014 A. Gerstlauer

17

Multi-Processor Systems-on-Chip (MPSoCs)

- Multi-processor
 - Heterogeneous
 - Asymmetric multiprocessing (AMP)
 - Distributed memory & operating system

Multi-core

- Heterogeneous or homogeneous or identical
- Symmetric multi-processing (SMP)
- · Shared memory & operating system
- Multi-core processors in a multi-processor system
- Many-core
 - > 10 processors/cores ...

EE382V: Embedded Sys Dsgn and Modeling, Lecture 8

© 2014 A. Gerstlauer

18

Multi-Processor Mapping

- Partitioning
 - Possible extensions of classical two-partition approaches
 - Min-cut, clustering, annealing
 - Truly parallel execution (not just accelerators)
 - Need to consider effect on scheduling
- Scheduling
 - Multi-core scheduling (SMP)
 - Tasks can migrate (frequency? overhead? cache pollution?)
 - > Real-time extensions
 - Exact global P-fair scheduling for indep. periodic task sets
 - Partitioned/global EDF heuristics for indep./dep. task sets
 - True multi-processor scheduling (AMP)
 - General (dependent/aperiodic) tasks with or without migration (NP-hard)
 - ➤ Integrated partitioning & scheduling

Partitioned queue (+ load balancing)

ReadyQueue0

ReadyQueue1

ReadyQueue1

ReadyQueue1

ReadyQueue2

Global queue (+ affinity)

T3 T2

© 2014 A. Gerstlauer

19

EE382V: Embedded Sys Dsgn and Modeling, Lecture 8

Multi-Processor Mapping Formulations (1)

- Models of computation
 - Set of tasks (processes/actors) { $T_1, T_2, ...$ }
 - Independent
 - Task graph = data-flow/precedence graph (DFG/HSDF)= directed, acylic graph (DAG)
 - Generalized task models (KPN, SDF)
 - · Timed models
 - Arrival/release times a_i (periods t_i), soft/hard deadlines d_i (= t_i)
- Models of Architecture
 - Set of processing elements (processors) $\{P_1, P_2, \dots\}$
 - Number and type fixed, constrained, or flexible
 - With or without migration, homogeneous or heterogeneous
 - Set of communication media (busses) { B_1, B_2, \dots }
 - Shared, point-to-point, fully connected
 - Set of storage elements (memories) $\{M_1, M_2, \dots\}$
 - Shared, distributed

EE382V: Embedded Sys Dsgn and Modeling, Lecture 8

© 2014 A. Gerstlauer

20

Multi-Processor Mapping Formulations (2)

- Optimization problems
 - Cost models
 - Analytical: execution times e_i (best/worst/average?), real-time calc.
 - Simulation (dynamic scheduling, timing variations)
 - Objectives/constraints
 - Latency: response time r_i = finish time $f_i a_i$, lateness l_i = r_i d_i
 - Throughput: 1 / makespan (schedule length)
 - Cost: chip area, code/memory size, ...
- Examples (all at least NP-complete):
 - General job-shop scheduling
 - Minimize makespan of independent task set on m processors
 - Classical multi-processor scheduling: atomic jobs, no migration
 - General DAG/DFG scheduling
 - Minimize makespan for dependent task graph on m resources
 - Minimize resources under makespan constraint
 - Pipelined variants for periodic task graph invocations
 - KPN, SDF scheduling
 - Optimize latency, throughput, buffers, cost, ... under x constraints

EE382V: Embedded Sys Dsgn and Modeling, Lecture 8

© 2014 A. Gerstlauer

21

Multi-Processor Mapping Approaches

- Exact methods
 - Integer linear programming (ILP)
- Constructive heuristics
 - List schedulers to minimize latency/makespan
 - Hu's algorithm as optimal variant for uniform tasks & resources
 - Force-directed schedulers to minimize resources
- Generic iterative heuristics
 - Simulated annealing
 - Set-based multi-objective DSE approaches
- Many of these adapted from other domains
 - DAG/DFG scheduling in compilers & high-level synthesis
 - > Production planning, operations research, ...

EE382V: Embedded Sys Dsgn and Modeling, Lecture 8

© 2014 A. Gerstlauer

22

Integer Linear Programming

- Linear expressions over integer variables

 - $C = \sum_{x_i \in X} a_i x_i \text{ with } a_i \in R, x_i \in N$ (1) $C = \sum_{x_i \in X} a_i x_i \text{ with } a_i \in R, x_i \in N$ (1) $C = \sum_{x_i \in X} a_i x_i \text{ with } a_i \in R, x_i \in N$ (2)

Def.: The problem of minimizing (1) subject to the constraints (2) is called an integer linear programming (ILP) problem.

If all x_i are constrained to be either 0 or 1, the ILP problem said to be a **0/1 (or binary) integer linear programming problem**.

Source: L. Thiele

EE382V: Embedded Sys Dsgn and Modeling, Lecture 8

© 2014 A. Gerstlauer

Integer Linear Program for Partitioning (1)

- Inputs
 - Tasks t_i , $1 \le i \le n$
 - Processors p_k , $1 \le k \le m$
 - Cost $c_{i,k}$, if task t_i is in processor p_k
- Binary variables $x_{i,k}$
 - $x_{i,k} = 1$: task t_i in block p_k
 - $x_{i,k} = 0$: task t_i not in block p_k
- Integer linear program:

$$x_{i,k} \in \{0,1\} \quad 1 \le i \le n, 1 \le k \le m$$

$$\sum_{k=1}^{m} x_{i,k} = 1 \quad 1 \le i \le n$$

minimize
$$\sum_{k=1}^{m} \sum_{i=1}^{n} x_{i,k} \cdot c_{i,k}$$
 $1 \le k \le m, 1 \le i \le n$

Source: L. Thiele

EE382V: Embedded Sys Dsgn and Modeling, Lecture 8

© 2014 A. Gerstlauer

Integer Linear Program for Partitioning (2)

- Additional constraints
 - example: maximum number of h_k objects in block k

$$\sum_{i=1}^{n} x_{i,k} \le h_k \quad 1 \le k \le m$$

- Popular approach
 - Various additional constraints can be added
 - If not solving to optimality, run times are acceptable and a solution with a guaranteed quality can be determined
 - Can provide reference to provide optimality bounds of heuristic approaches
 - Finding the right equations to model the constraints is an art... (but good starting point to understand a problem)
 - Static scheduling can be integrated (SDFs)

Source: L. Thiele

EE382V: Embedded Sys Dsgn and Modeling, Lecture 8

© 2014 A. Gerstlauer

25

Integer Linear Program for Scheduling

- Task graph model
 - Time window: $0 \le l \le T$
 - Execution time $e_{i,k}$ of task t_i on processor p_k
 - Cost $c_{i,k}$, if task t_i is in processor p_k
- Decision variables
 - $s_{i,l} \in \{0,1\}$: task t_i starts at time l
 - $x_{i,k} \in \{0,1\}$: task t_i in processor p_k
- Constraints
 - Single task execution: $\sum_{l} s_{i,l} = 1$, $1 \le i \le n$
 - Unique mapping of tasks to processors: $\sum_{k} x_{i,k} = 1$, $1 \le i \le n$
 - Non-overlapping execution on each processor: $\sum_{i} \sum_{\tau=l-e_{i,k}+1}^{l} x_{i,k} \cdot s_{i,\tau}, \ 1 \leq k \leq m, \ 0 \leq l \leq T$
 - Task dependencies $t_i \rightarrow t_i$: $\sum_l l \cdot s_{i,l} \geq \sum_l l \cdot s_{i,l} + \sum_k x_{i,k} \cdot e_{i,k}$
- Objective
 - Weighted cost & latency: $w_1(\sum_i \sum_k c_{i,k} \cdot x_{i,k}) + w_2(\sum_l l \cdot s_{n,l} + \sum_k x_{n,k} \cdot e_{n,k})$

EE382V: Embedded Sys Dsgn and Modeling, Lecture 8

© 2014 A. Gerstlauer

2

Partitioning & Scheduling ILP (1)

- Multi-objective cost function
 - Minimize: $w_1 \cdot Throughput + w_2 \cdot Latency + w_3 \cdot Cost$
- Decision variables
 - Actor to processor binding
 - Actor start times
- Constraints
 - Execution precedence according to SDF semantics
 - Unique actor mapping
 - Processor-dependent actor execution times
 - Sequential execution on each processor
 - Stable periodic phase
- Optimize partition and schedule simultaneously

J. Lin, A. Srivasta, A. Gerstlauer, B. Evans, "Heterogeneous Multiprocessor Mapping for Real-time Streaming Systems," ICASSP'11

EE382V: Embedded Sys Dsgn and Modeling, Lecture 8

© 2014 A. Gerstlauer

28

Partitioning & Scheduling ILP (2)

- ILP formulation of multi-processor SDF mapping
 - Inputs
 - Time window: $0 \le t \le T$
 - Repetition vector: number of executions r_i for actor i
 - Production and consumption rates on edge i1->i2: $c_{i1.i2}$, $p_{i1.i2}$
 - Initial tokens on edge $i1->i2:o_{i1:i2}$
 - Execution time of actor *i* on processor *j*: $d_{i,j}$
 - Cost of processor j: pc_i
 - Decision variables
 - $A_{i,j} \in \{0,1\}$: Actor *i* mapped to processor *j*
 - $-S_i(t), E_i(t)$: Number of started/ended executions of actor *i* till time *t*
 - start(t): Indicator for start of periodic phase
 - Helper variables
 - $-W_i(t) = \sum_{\tau=0}^{t} (S_i(\tau) E_i(\tau))$: number of executions of i at time t
 - $-F_i(t)$: step function indicating first start of i in stable phase

J. Lin, A. Srivasta, A. Gerstlauer, B. Evans, "Heterogeneous Multiprocessor Mapping for Real-time Streaming Systems," ICASSP'11

EE382V: Embedded Sys Dsgn and Modeling, Lecture 8 $\,$

2014 A. Gerstlauer

29

Partitioning & Scheduling ILP (3)

- ILP formulation of multi-processor SDF mapping (cont'd)
 - Constraints
 - Unique actor mapping: $\sum_{i} A_{i,j} = 1$
 - Actor execution time: $S_i(t) = \sum_j A_{i,j} E_i(t + d_{i,j})$
 - Token balance equations: $c_{i1,i2}S_{i2}(t) \le p_{i1,i2}E_{i1}(t) + o_{i1,i2}$
 - Sequential (non-overlapping) execution: $\sum_i A_{i,j}(S_i(t) E_i(t)) \le 1$
 - Periodicity of schedule: $W_i(T) \sum_t W_i(t) start(t) = r_i \sum_j A_{i,j} d_{i,j}$
 - Objectives
 - $Period = T \sum_{t} t \cdot start(t)$
 - $Cost = \sum_{j} Alloc_{j} \cdot pc_{j}$
 - $\ Latency = \underbrace{\sum_{l} (F_{1}(t) F_{l}(t)) + \sum_{j} A_{l,j} d_{l,j}}_{\text{Time interval between source's 1st start and sink's 1st end in the periodic phase}}^{\text{Jime interval between source's 1st start and sink's 1st end in the periodic phase}}^{\text{Difference in iteration}}$

J. Lin, A. Srivasta, A. Gerstlauer, B. Evans, "Heterogeneous Multiprocessor Mapping for Real-time Streaming Systems," ICASSP'11

EE382V: Embedded Sys Dsgn and Modeling, Lecture 8

© 2014 A. Gerstlauer

30

SDF Mapping Optimizations

- Integer Linear Programming (ILP) formulation
 - Optimal, but single solution only and exponential

> Heuristics

- Maximum throughput partition
 - For fixed partition, the best throughput is determined by the critical processor
 - Best throughput achievable if acyclic SDF or enough initial tokens

Two-stage ILP optimization process

> Throughput and cost are prioritized over latency

Integrate communication model

➤ J. Lin, A. Gerstlauer, B. Evans, "Communication-aware Heterogeneous Multiprocessor Mapping for Real-time Streaming Systems," JSP'12

EE382V: Embedded Sys Dsgn and Modeling, Lecture 8

© 2014 A. Gerstlauer

31

Multi-Processor Mapping Approaches

- Exact methods
 - Exhaustive search
 - Integer linear programming (ILP)
- Constructive heuristics
 - Random mapping
 - List schedulers to minimize latency/makespan
 - Hu's algorithm as optimal variant for uniform tasks & resources
 - Force-directed schedulers to minimize resources
- Generic iterative heuristics
 - Random search
 - · Iterative improvement/hill climbing
 - Simulated annealing

EE382V: Embedded Sys Dsgn and Modeling, Lecture 8

© 2014 A. Gerstlauer

32

Constructive Methods – List Scheduling

- Greedy heuristic
 - Process graph in topology order (source to sink)
 - Process ready nodes in order of priority (criticality)
 - List scheduling variants only differ in priority function
 - Highest level first (HLF), i.e. distance to the sink
 - Critical path, i.e. longest path to the sink
- Widely used scheduling heuristic
 - Operation scheduling in compilation & high-level synthesis
 - Hu's algorithm for uniform delay/resources (HLF, optimal)
 - · Iterative modulo scheduling for software pipelining
 - · Job-shop/multi-processor scheduling
 - Graham's algorithm (optimal online algorithm for ≤ 3 processors)
 - Heterogeneous earliest-finish time first (HEFT)
 - Natural fit for minimizing makespan/latency
 - ➤ O(n) complexity

EE382V: Embedded Sys Dsgn and Modeling, Lecture 8

© 2014 A. Gerstlauer

33

Constructive Methods – List Scheduling

```
1 = 0;
i = 0...n: p<sub>i</sub> ← Idle;
Ready ← Initial tasks (no dependencies);
while (!empty(Ready)) {
   forall p<sub>i</sub>: status(p<sub>i</sub>) == Idle {
        t = first(Ready, p<sub>i</sub>); // by priority
        p<sub>i</sub> ← (t, l, l + exec_time(t));
   }
   l = min(l + 1, finish_time(p<sub>i</sub>));
   forall p<sub>i</sub>: finish_time(p<sub>i</sub>) == l {
        Ready ← successors(current(p<sub>i</sub>));
        p<sub>i</sub> ← Idle;
   }
}
```

EE382V: Embedded Sys Dsgn and Modeling, Lecture 8

© 2014 A. Gerstlauer

34

Multi-Processor Mapping Approaches

Exact methods

- Exhaustive search
- Integer linear programming (ILP)

Constructive heuristics

- Random mapping
- List schedulers to minimize latency/makespan
 - Hu's algorithm as optimal variant for uniform tasks & resources
- Force-directed schedulers to minimize resources

Generic iterative heuristics

- Random search
- Iterative improvement/hill climbing
- Simulated annealing

EE382V: Embedded Sys Dsgn and Modeling, Lecture 8

© 2014 A. Gerstlauer

35

Iterative Methods

Basic principle

- Start with some initial configuration (e.g. random)
- Repeatedly search neighborhood (similar configuration)
 - Select neighbor as candidate (make a move)
- Evaluate fitness (cost function) of candidate
 - Accept candidate under some rule, select another neighbor
- Stop if quality is sufficient, no improvement, or end time

Ingredients

- · Way to create an initial configuration
- Function to find a neighbor as next candidate (make move)
- Cost function (single objective)
 - Analytical or simulation
- Acceptance rule, stop criterion
- No other insight into problem needed

Source: L. Thiele

EE382V: Embedded Sys Dsgn and Modeling, Lecture 8

© 2014 A. Gerstlauer

36

Iterative Improvement

- Greedy "hill climbing" approach
 - Always and only accept if cost is lower (fitness is higher)
 - Stop when no more neighbor (move) with lower cost
- Disadvantages
 - Can get trapped in local optimum as best result
 - Highly dependent on initial configuration
 - Generally no upper bound on iteration length
- How to cope with disadvantages?
 - Repeat with many different initial configurations
 - Retain information gathered in previous runs
 - Use a more complex strategy to avoid local optima
 - Random moves & accept cost increase with probability > 0

Source: L. Thiele

EE382V: Embedded Sys Dsgn and Modeling, Lecture 8

© 2014 A. Gerstlauer

37

Iterative Methods - Simulated Annealing

- From Physics
 - Metal and gas take on a minimal-energy state during cooling down (under certain constraints)
 - At each temperature, the system reaches a thermodynamic equilibrium
 - Temperature is decreased (sufficiently) slowly
 - Probability that a particle "jumps" to a higher-energy state:

$$P(e_i, e_{i+1}, T) = e^{\frac{e_i - e_{i+1}}{k_B T}}$$

- Application to combinatorial optimization
 - Energy = cost of a solution (cost function)
 - Can use simulation or any other evaluation model (KPN, DDF, ...)
 - Iteratively decrease temperature
 - In each temperature step, perform random moves until equilibrium
 - Sometimes (with a certain probability) increases in cost are accepted.

Source: L. Thiele

EE382V: Embedded Sys Dsgn and Modeling, Lecture 8

© 2014 A. Gerstlauer

38

Iterative Methods - Simulated Annealing

```
temp = temp start;
cost = c(P);
while (Frozen() == FALSE) {
    while (Equilibrium() == FALSE) {
        P' = RandomMove(P);
        cost' = c(P');
        deltacost = cost' - cost;
         if (Accept(deltacost, temp) > random[0,1)) {
             P = P';
                                                           deltacost
             cost = cost';
                                                            k·temp
        }
                                 Accept(deltacost, temp) = e
     }
   temp = DecreaseTemp (temp);
}
                                                       Source: L. Thiele
                                          © 2014 A. Gerstlauer
EE382V: Embedded Sys Dsgn and Modeling, Lecture 8
```

Iterative Methods - Simulated Annealing

- Random moves: RandomMove(P)
 - Choose a random solution in the neighborhood of P
- Cooling Down: DecreaseTemp(), Frozen()
 - Initialize: temp_start = 1.0
 - DecreaseTemp: temp = α temp (typical: $0.8 \le \alpha \le 0.99$)
 - Terminate (frozen): temp < temp min or no improvement
- Equilibrium: Equilibrium()
 - After defined number of iterations or when there is no more improvement
- Complexity
 - From exponential to constant, depending on the implementation of the cooling down/equilibrium functions
 - The longer the runtime, the better the quality of results

Source: L. Thiele

EE382V: Embedded Sys Dsgn and Modeling, Lecture 8

© 2014 A. Gerstlauer

40

Lecture 8: Outline

- ✓ Automated decision making
 - ✓ Problem formulation
 - ✓ Optimization approaches
- ✓ Partitioning & scheduling
 - √ Traditional hardware/software co-design
 - ✓ System-level design
- Design space exploration
 - Multi-objective optimization
 - Exploration algorithms

EE382V: Embedded Sys Dsgn and Modeling, Lecture 8

© 2014 A. Gerstlauer

41

Multi-Objective Exploration

- Multi-objective optimization (MOO)
 - In general, several solutions (implementations) exist with different properties, e.g., area and power consumption, throughput, etc.
 - Implementations are often optimized with respect to many (conflicting) objectives
 - Finding best implementations is task of multi-objective optimization
- Exact, constructive & iterative methods are prohibitive
 - Large design space, multiple objectives, dynamic behavior
- Set-based iterative approaches (EA, ACO, PSO)
 - Randomized, problem independent (black box)
 - Often inspired by processes in nature (evolution, ant colonies, diffusion)

Source: C. Haubelt, J. Teich

EE382V: Embedded Sys Dsgn and Modeling, Lecture 8

© 2014 A. Gerstlauer

42

- Set of all solutions X
- A decision vector x ∈ X is said to be Pareto-optimal
 if ∄y ∈ X: y ≻ x

Optimization Goals

EE382V: Embedded Sys Dsgn and Modeling, Lecture 8

- Find Pareto-optimal solutions (Pareto front)
- Or a good approximation (convergence, diversity)
- · With a minimal number of iterations

© 2014 A. Gerstlauer

Source: C. Haubelt, J. Teich

Design Space Exploration (DSE)

- Search space vs. decision space vs. design space
 - Encoding of decisions defines search space
 - Focus on observable decisions, hardcode unobservable ones
 - » No observable effect on design quality, e.g. address mappings
 - Functional & architecture constraints define decision space
 - Quickly prune & reject infeasible decisions
 - » Smart encoding, avoid during construction, attach large quality penalty
 - Quality constraints restrict objective space
 - Invalid solutions outside of valid quality range

EE382V: Embedded Sys Dsgn and Modeling, Lecture 8

© 2014 A. Gerstlauer

47

Design Space Exploration (DSE)

- Design Space Exploration is an iterative process
 - How can a single design point be evaluated?
 - Most DSE approaches rely on simulation-based cost models
 - How can the design space be covered during the exploration process?

Source: C. Haubelt, J. Teich, Univ. of Erlangen-Nuremberg

EE382V: Embedded Sys Dsgn and Modeling, Lecture 8

© 2014 A. Gerstlauer

48

Design Space Exploration (DSE)

- Multi-objective evolutionary algorithms (MOEAs)
 - Capable to explore the search space very fast, i.e., they can find some good solutions after a few iterations (generations)
 - Explore high dimensional search spaces
 - Can solve variety of problems (discrete, continuous, ...)
 - Work on a population of individuals in parallel
 - Black box optimization (generic evaluation model)
- Fitness evaluation
 - Simulation, analysis or hybrid
 - Tradeoff between accuracy and speed
 - Hierarchical optimization
 - Combination with second-level optimization

Source: C. Haubelt, J. Teich

EE382V: Embedded Sys Dsgn and Modeling, Lecture 8

© 2014 A. Gerstlauer

49

SDF Mapping Results (1)

- Run-time comparison
 - Artificial cyclic/acyclic SDF graphs mapped to 3 processors

J. Lin, A. Srivasta, A. Gerstlauer, B. Evans, "Heterogeneous Multiprocessor Mapping for Real-time Streaming Systems," ICASSP'11

EE382V: Embedded Sys Dsgn and Modeling, Lecture 8

© 2014 A. Gerstlauer

SDF Mapping Results (2)

Design space exploration for an MP3 decoder

Convergence to Pareto front

- Within 10⁻⁶ of optimum
- 12x better runtime
 - <1 hour execution time

Latency Solution of global ILP with $\lambda_1 = 0.8$ and $\lambda_2 = 0.2$ Processor Cost

J. Lin, A. Srivasta, A. Gerstlauer, B. Evans, "Heterogeneous Multiprocessor Mapping for Real-time Streaming Systems," ICASSP'11

EE382V: Embedded Sys Dsgn and Modeling, Lecture 8 © 2014 A. Gerstlauer

Lecture 8: Summary

- Multi-Processor Mapping
 - Formalization as a basis for automation
 - Partitioning (allocation, binding) & scheduling
 - General optimization problems
 - Classical HW/SW co-design approaches
 - Single processor + co-processors
 - Real-time scheduling theory
 - Multi-processor mapping heuristics
 - ILPs, list scheduling, simulated annealing
 - Design space exploration (DSE)
 - Multi-objective optimization (MOO)
 - Set-based iterative methods: MOEAs

EE382V: Embedded Sys Dsgn and Modeling, Lecture 8

© 2014 A. Gerstlauer

57