Lecture 9 – System Modeling & Virtual Prototyping

Andreas Gerstlauer
Electrical and Computer Engineering
University of Texas at Austin
gerstl@ece.utexas.edu

Lecture 9: Outline

• System refinement
 • Automatic model generation
 • Refinement flow

• System modeling
 • Virtual platform prototyping
 • Modeling levels
System-Level Synthesis

- **X-Chart**

 ![X-Chart Diagram]

 - Specification
 - Behavior (MoC)
 - Constraints (Architecture)
 - Synthesis
 - Decision Making
 - Refinement
 - Implementation
 - Structure (TLM)
 - Quality (Metrics)

 Hardware/Software Synthesis

 Methodology
 - Stepwise model refinement
 - Computation & communication

Automatic Model Generation

- **Problem:** Writing of system models is
 - Time consuming, error-prone, tedious
- **Solution:**
 - Automatic model generation
- **Refinement-based approach**
 - System designer or tool: makes design decisions
 - Refinement tool: automatically generates the model
- **Benefits**
 - No manual model writing, focus on design decisions
 - Low error rate by automating error-prone tasks
 - Easy change/upgrade for incremental/derivative design
 - No change in basic design methodology

 - **Automated path to implementation (synthesis)**
 - **Automated design quality evaluation (exploration)**
Recall: System Refinement Flow

- Abstraction based on level of implementation detail
 - Computation and communication granularity

- Path from model A to model F

- Design methodology & flow
 - Set of models and transformations between models

Exhaustive Design Space Exploration

- Automated design space exploration
 - Automotive task set [MiBench]
 - Two independent + two dependent tasks
 - PowerPC-based target platform
 - One to four cores, priority-based or round-robin scheduling

- Exploration of 2000 design alternatives
 - 47h of CPU time using exhaustive search
 - 8h of CPU time using hierarchical 2-step approach
 - First computation to prune design space, then communication to final Pareto front
Virtual Platform Prototyping

Computation refinement

- Untimed
- TLM (LT/AT)
- PCAM

Communication refinement

Virtual Prototype

Modeling Levels

Computation
- Host-compiled modeling
 - Abstract execution above instructions
 - Native execution of functionality
 - Back-annotation
 - Models of execution environment (OS & processor)

- Communication
 - Transaction-level modeling (TLM)
 - Abstract transactions above pins and wires
 - Function calls for data transfer functionality
 - Back-annotation

- Functionality & performance/power/energy/reliability/…
 - Varying levels of abstraction & granularity
 - Fundamental speed vs. accuracy tradeoffs
System-Level Modeling Space

- Cycle-Accurate
- RTL
- Virtual Platform
- Host-Compiled

System Models

- Host-compiled model
 - Native functionality
 - Timing & power back-annotation
 - OS models
 - Processor models
- SLDL & TLM backplane
 - Discrete events [SpecC, SystemC]
 - Interconnect
- Hardware model
 - Functionality & timing
- ISS model
 - Functionality [QEMU, OVP]
 - Cycle-accurate [SimpleScalar]
Recall: SCE Cellphone Example

- **2 Subsystems**
 - ARM7TDMI
 - MP3 Decoding
 - Jpeg Encoding
 - Motorola DSP 56600k
 - GSM Transcoding

- **4 Accelerator HW blocks**

- **10 I/O HW blocks**

- **5 Busses**
 - AMBA AHB
 - DSP Port A bus
 - 3 Custom busses

Recall: Cellphone Results

- **Experimental setup**
 - 1.5 second MP3
 - 640x480 picture
 - 1.5 speech GSM
 - 3s / 300M ARM cycles / 180M DSP cycles

- **Simulation speed**
 - 300 Mcycles/s

- **Accuracy**
 - <3% error

- **Transaction-level modeling (TLM) of communication**
- **Host-compiled software, OS and processor modeling**
Lecture 9: Summary

- System modeling and refinement
 - From specification to implementation
 - Basis for automated synthesis and exploration
 - Automatic model generation
 - Layer-based successive refinement

- Various levels of abstraction
 - Computation and communication
 - Speed and accuracy tradeoffs
 - Quest for fast and accurate modeling techniques