
The University of Texas at Austin
Department of Electrical and Computer Engineering

Real-Time Systems / Real-Time Operating Systems
EE445M/EE380L.12, Fall 2020

Final Exam Solutions
Date: December 12, 2020

UT EID:

Printed Name:

Last, First

Your signature is your promise that you have not cheated and will not cheat on this exam, nor will
you help others to cheat on this exam:

Signature:

Instructions:

• Open book, open notes and open web.
• No calculators or any electronic devices other than your laptop/PC (turn cell phones off).
• You are allowed to access any resource on the internet, but no electronic communication

other than with instructors.
• Please be sure that your answers to all questions (and all supporting work that is required)

are contained in the space (boxes) provided.
• For all questions, unless otherwise stated, find the most efficient (time, resources) solution.

Problem 1 10

Problem 2 10

Problem 3 20

Problem 4 20

Problem 5 15

Problem 6 10

Problem 7 15

Total 100

EE445M/EE380L.12, Fall 2020 Final Solutions 2
Name:

Problem 1 (10 points): Deadlock
Assume the following OS_Wait_Or implementation from the midterm solutions:
Sema4Type* OS_Wait_Or(Sema4Type* semaA, Sema4Type* semaB) {
Sema4Type *semaRes;
DisableInterrupts();
while ((*semaA) <= 0 && (*semaB) <= 0) {
 EnableInterrupts(); DisableInterrupts();
}
if ((*semaA) > 0) {
 semaRes = semaA;
} else {
 semaRes = semaB;
}
(*semaRes) = (*semaRes) – 1;
 EnableInterrupts();
return semaRes;
}

Given the following program using OS_Wait_Or:
OS_InitSemaphore(&A,1);
OS_InitSemaphore(&B,1);
OS_InitSemaphore(&C,1);
OS_InitSemaphore(&D,1);

TaskA(){
 sema4* t1;
 sema4* t2;
 t1= OS_Wait_OR(&A,&B);
 t2= OS_Wait_OR(&B,&C);
 ...

 OS_Signal(t2);
 OS_Signal(t1);
}

TaskB(){
 sema4* t1;
 sema4* t2;
 t1= OS_Wait_OR(&A,&C);
 t2= OS_Wait_OR(&C,&D);
 ...

 OS_Signal(t2);
 OS_Signal(t1);
}

TaskC(){
 sema4* t1;
 sema4* t2;
 t1= OS_Wait_OR(&D,&A);
 t2= OS_Wait_OR(&B,&C);
 ...

 OS_Signal(t2);
 OS_Signal(t1);
}

Is there any possible interleaving that could cause deadlock with this program? If yes, please show
an example that could be a deadlock. If not, justify your answer.

Since the OS_Wait_Or prioritizes the first argument over the second, there is no deadlock, task
A or task B will grab sema A, leaving either sema B or sema C available for at least one task to
continue past the second OS_Wait.
If order of semas were reversed, or sema A were not available for some other reason (another
task grabbing it), there would be a deadlock sequence:
First, Task A holds semaphore B, then Task B holds semaphore C, then Task C holds semaphore
D.
BCD(B or C) circular wait.

EE445M/EE380L.12, Fall 2020 Final Solutions 3
Name:

Problem 2 (10 points): Scheduling
Given the following three foreground threads in your system:
ThreadA(){
 while(1) {
 OS_Wait(&Sema);
 countA++;
 }
}

ThreadB(){
 while(1) {
 OS_Wait(&Sema);
 countB++;
 }
}

ThreadC() {
 while(1) {
 OS_Signal(&Sema);
 OS_Signal(&Sema);
 countC++;
 }
}

Is there any OS realization (scheduling strategy, semaphore implementation, priority assignment)
that ensures that all three threads run an equal number of times, i.e. that the three counting variables
countA, countB and countC are equal or at most off by one at all times? If so, what is that OS
setup? If not, why not? You can assume that the semaphore and all counting variables are
initialized to zero.

It can not be round-robin since otherwise whatever thread runs after C would pick up all the semaphores.

With priorities, thread C must have lower priority than A or B or it would run forever and A/B would
never run. Priorities also means blocking semaphores.

Finally, threads A and B must have same priorities, with round-robin scheduling among them or else
one of the two would always pick up both semaphores whenever C notifies.

EE445M/EE380L.12, Fall 2020 Final Solutions 4
Name:

Problem 3 (20 points): Heap and ELF loader
Assume that six ELF executables files with code and data segment sizes as shown below are stored
on your SD card and launched from your interpreter in the order A, B, C, D and E, where the ELF
loader uses different heap allocation routines for code and data. Heap_Alloc allocates memory in
1KB granularity from start to end, i.e. an allocated block is always placed at the bottom of its
chosen free space. Available heap size is 64KB in total and there is no metadata overhead.
Size of code and data segment for each program:

Program Code size Data size 6KB for C

6KB for D

1KB for E

23KB Free

7KB for C

5KB for D

6KB for E

10KB Free

A 6 KB 11KB

B 6 KB 13KB

C 6 KB 7 KB

D 6 KB 5 KB

E 6 KB 1 KB

ELF loader:

int exec_elf(…) { int sr;
 …
 sr = StartCritical()
 code = Heap_AllocCode(h->codeSize);
 data = Heap_AllocData(h->dataSize);
 EndCritical(sr);
 …
}

Given the heap state as shown on the right:

a) What heap allocation algorithms (first/best/worst fit) are used for code and data? Are they
different? How do you know, i.e. explain your reasoning.

Code is best fit, and Data is worst fit.
As the first programs, A must have been allocated into the first 17kB of memory no matter
what algorithm, but is already released now. The only way C’s data could have ended up
where it is (36kB from bottom) is if B was loaded while A was still in memory. Given that C’s
code is at location 0, A must have been unloaded but B still in memory when C was loaded. At
that point, there were 17KB of free space on the bottom, and 28KB of free space on the top of
the heap. Then, code must have been first fit or best fit, and data worst fit.
Then, D is loaded, leaving 5kB and 16kB of free space. Since E’s worst-fit data ends up in the
lower part, however, B must have been released at that point, such that free space was 24kB
and 16kB instead. Since E’s code ended up in the 16kB part, code must be best fit.

Start of Heap

EE445M/EE380L.12, Fall 2020 Final Solutions 5
Name:

b) What was the program execution order flow, i.e. specify the sequence and order in which
programs started and ended to reach this heap state, e.g. in the form Start A, End A, …

See above: Start A, Start B, End A, Start C, Start D, End B, Start E

c) Suppose you launch program E multiple times and there are no other programs loaded. How
many instances of E can be loaded into memory simultaneously? Assume that there are enough
resource other than the heap.

64kB/7kB = maximum 9 instances of E

d) Now suppose you want to load 50 instances of program E into memory simultaneously. Is this
possible? If no, why not. If yes, explain how to enable this with 64KB of heap.

The code segment can be shared and needs to be loaded only once:
6kB + 50 * 1kb = 56kB

EE445M/EE380L.12, Fall 2020 Final Solutions 6
Name:

Problem 4 (20 points): File Systems
In a filesystem, disk accesses are expensive and can degrade performance. Given a disk with 512
byte blocks and the following trace of file accesses made by an application:

a1: Read File A, Byte 634
a2: Write File A, Byte 634
a3: Read File B, Byte 128
a4: Read File A, Byte 42
a5: Write File B, Byte 128
a6: Read File C, Byte 522
a7: Write File C, Byte 1096
a8: Write File A, Byte 42

a) How many disk accesses are performed by file systems that use an indexed and linked
allocation as discussed in class? Assume that the directory and index table are both already
loaded into memory, but no other caching of data is performed between accesses.

Indexed File System:
Every read is one access.
Every write is read-modify-write.
Total of 12 accesses.

Linked File System:
17 accesses. Traverse list one every access:
a1: read A1, read A2
a2: read A1, read A2, write A2
a3: read B1
a4: read A1
a5: read and write B1
a6: read C1, read C2
a7: read C1, read C2, read C3, write C3
a8: read and write A1

b) Now assume an implementation of a file system in which you have created a small file system
cache in memory that remembers the 3 last blocks from the disk that you have accessed.
Suppose that the cache replaces blocks in a First In First Out manner. How many disk accesses
are performed for the indexed and linked file systems? Assume that modified (dirty) blocks in
the cache are only written back to disk when they are evicted from the cache, and that linked
list traversals are always started from the beginning.

Indexed File System:

7 accesses:
a1: read A2 and cache
a2: update A2 in cache
a3: read B1 and cache
a4: read A1 and cache
a5: update B1 in cache
a6: read C2, cache and write-back A2
a7: read C3, cache and write-back B1
a8: update A1 in cache

Linked File System:

9 accesses:
a1: read and cache A1 & A2
a2: hit A1 and update A2 in cache
a3: read and cache B1
a4: hit A1
a5: update B1 in cache
a6: read and cache C1 & C2, write A2
a7: hit C1 & C2, read and cache C3, write B1
a8: read and cache A1,replace C1

EE445M/EE380L.12, Fall 2020 Final Solutions 7
Name:

c) To have persistence in case of crashes, a periodic writeback of dirty blocks in the cache must
be factored in. Assume that after the fifth access in the trace, we perform a periodic writeback
of all dirty elements in the cache. How does this affect the number of disk accesses for the
index and linked file systems?

Indexed File System:

7 accesses as before:
a1: read A2 and cache
a2: update A2 in cache
a3: read B1 and cache
a4: read A1 and cache
a5: update B1 in cache
-> write back A2 and B1
a6: read C2 and cache, replace A2
a7: read C3 and cache, replace B1
a8: update A1 in cache

Linked File System:

9 accesses as before:
a1: read and cache A1 & A2
a2: hit A1 and update A2 in cache
a3: read and cache B1
a4: hit A1
a5: update B1 in cache
-> write back A2 and B1
a6: read and cache C1 & C2, replace A1, A2
a7: hit C1 & C2, read and cache C3
a8: read and cache A1,replace C1

d) How does the write back frequency affect file system performance and reliability?

Less frequent write-backs increase likelihood of data losses in case of crashes.

More frequent write-backs decrease performance, as blocks may be written back more often
than they need to be, e.g. in case of successive write updates of the same cached block.

EE445M/EE380L.12, Fall 2020 Final Solutions 8
Name:

Problem 5 (15 points): Virtual Memory
Assume a computer with a 16-bit memory address space using virtual memory with 4kB pages.
Given the two ELF executable files containing code and data segments with sizes and load
addresses as indicated, the partial state of main memory, and the page table of the process
executing program A after it has been loaded into memory. No other process is loaded at this point:
Program A:

 Load address Size

Code 0x0000 6kB

Data 0x2000 12kB

Program B:

 Load address Size

Code 0x0000 4kB

Data 0x6000 13kB

a) What is size of each page table per process?

64kB/4kB = 16 pages, needing 4 bits to encode page number/frame, 12 bits for offset.
Hence, every page table entry is 1 byte (assuming not more than 4 additional bits for meta-
data).
As such, page table is 16 * 1B = 16B.

b) Show the location of the code and data segments for process A in memory. Is there any internal
or external fragmentation? What is the largest program (code and data size) that can be loaded?

There is no external fragmentation, there are 9 unallocated pages and the largest program
(code+data) that can be loaded is 9 * 4kB = 36kB.
There is internal fragmentation, however. A’s code segment takes up two pages, with 2kB
wasted space in the second page.

 Page
Table A

 Page
Table B

Memory

 4 2 OS Code
 5 OS Data
 14 B code
 7 B data
 9 A code
 A code
 3 B data
 6 A data
 8 B data
 10 A data
 B data

 A data

0x0000

0xFFFF

EE445M/EE380L.12, Fall 2020 Final Solutions 9
Name:

c) Now assume that program B is also loaded into memory. Fill the page table for the
corresponding process and show the updated memory state after B has been loaded. Assume
that memory is allocated in a first available fashion from bottom to top. Is there any external
or internal fragmentation now? What is the largest program that can now be loaded?

Still no external fragmentation, 4 pages * 4kB = 16kB can still be allocated.
Additional internal fragmentation for B’s data segment not fitting evenly into 4 pages.

Problem 6 (10 points): Relocation
For each of the following functions written in assembly, is the code position-independent? If not,
indicate which part of the code is not and what needs to be done to relocate it at load time.

a) funcA
 LDR R1,=count
 LDR R0,[R1]
 ADD R0,R0,#1
 SVC #42
 BX LR

b) funcB
 ADD R1,R9,#32
 LDR R0,[R1]
 ADD R0,R0,#1
 BL OS_Sleep
 BX LR

Not position-independent, the count
variable is accessed using a hard-coded
address.

Requires patching/dynamic linking of
count’s address for load-time relocation.

Not position-independent.

Data accesses are, assuming that R9 is
initialized properly.

However, the call to OS_Sleep uses a
hard-coded branch offset. Requires
patching/dynamic linking during load-
time-relocation to adjust branch offset.
This may fail if OS_Sleep is too far away
and not reachable via a regular branch.

EE445M/EE380L.12, Fall 2020 Final Solutions 10
Name:

Problem 7 (15 points): Networking
Assume that two computers are directly connected in a local Ethernet network running at a raw
physical layer bit rate of 10Mbit/s.
a) What is the maximum achievable bandwidth for transmitting data from one machine to the

other at the Ethernet link layer? Assume that no other machines are transmitting, i.e. there are
no collisions.

In the best case, an Ethernet frame can at maximum have a payload of 1500 bytes within a
total frame length of 1526 bytes.
Effective bandwidth = 1500 bytes / 1526 bytes * 10Mbit/s = 9.83Mbit/s = 1.23MB/s

b) Now assume that we are running a TCP/IP protocol over the local network. What is the
maximum achievable bandwidth for transmitting data from one machine to the other at the IP
layer? Again, assume that no other machines are transmitting, i.e. there are no collisions and
that the IP protocol does not use any options.

IP header adds 20 bytes overhead per packet, leaving only 1480 bytes for real payload:
Bandwidth = 1480 bytes / 1526 bytes * 10Mbit/s = 9.67Mbit/s = 1.21MB/s

c) Finally, what is the maximum achievable bandwidth for transmitting data from one machine
to the other over a UDP and TCP connection? Assume that the TCP connection is already
established and that there are no buffering, windowing or acknowledgment delays.

UPD adds 8 byte overhead, TCP adds 20 bytes:
UDP: 1472 bytes / 1526 bytes * 10Mbit/s = 9.65Mbit/s = 1.21MB/s
TCP: 1460 bytes / 1526 bytes * 10Mbit/s = 9.57Mbit/s = 1.19MB/s

	Problem 1 (10 points): Deadlock
	Problem 2 (10 points): Scheduling
	Problem 3 (20 points): Heap and ELF loader
	Problem 4 (20 points): File Systems
	Problem 5 (15 points): Virtual Memory
	Problem 6 (10 points): Relocation
	Problem 7 (15 points): Networking

