
The University of Texas at Austin
Department of Electrical and Computer Engineering

Real-Time Systems / Real-Time Operating Systems
EE445M/EE380L.12, Fall 2020

Midterm Exam
Date: October 22, 2020

UT EID:

Printed Name:

Last, First

Your signature is your promise that you have not cheated and will not cheat on this exam, nor will
you help others to cheat on this exam:

Signature:

Instructions:

• Open book, open notes and open web.
• No calculators or any electronic devices other than your laptop/PC (turn cell phones off).
• You are allowed to access any resource on the internet, but no electronic communication

other than with instructors.
• Please be sure that your answers to all questions (and all supporting work that is required)

are contained in the space (boxes) provided.
• For all questions, unless otherwise stated, find the most efficient (time, resources) solution.

Problem 1 20

Problem 2 20

Problem 3 10

Problem 4 10

Problem 5 10

Problem 6 30

Total 100

EE445M/EE380L.12, Fall 2020 Midterm 2
Name:

Problem 1 (20 points): Semaphores
a) Given the following function template, fill in the rest of the code to design a spinlock

implementation of an OS_Wait_Or function that will wait for two semaphores and acquire the
first one that becomes available. The function should return a pointer to the acquired
semaphore. If both semaphores are available, the function can acquire and return any of the
two.

Sema4Type* OS_Wait_Or(Sema4Type* semaA, Sema4Type* semaB) {

 Sema4Type *semaRes;

DisableInterrupts();

 EnableInterrupts();

 return semaRes;
}

EE445M/EE380L.12, Fall 2020 Midterm 3
Name:

b) Given the following program using OS_Wait_Or:
OS_InitSemaphore(&A,1);
OS_InitSemaphore(&B,1);
OS_InitSemaphore(&C,1);
OS_InitSemaphore(&D,1);

TaskA(){
 sema4* t1;
 sema4* t2;
 t1 = OS_Wait_OR(&A,&B);
 t2 = OS_Wait_OR(&C,&D);
 ...

 OS_Signal(t2);
 OS_Signal(t1);
}

TaskB(){
 sema4* t1;
 sema4* t2;
 t1 = OS_Wait_OR(&A,&C);
 t2 = OS_Wait_OR(&C,&D);
 ...

 OS_Signal(t2);
 OS_Signal(t1);
}

TaskC(){
 sema4* t1;
 sema4* t2;
 t1 = OS_Wait_OR(&A,&C);
 t2 = OS_Wait_OR(&B,&D);
 ...

 OS_Signal(t2);
 OS_Signal(t1);
}

Is there any possible interleaving that could cause deadlock? If yes, please show an example that
could be a deadlock. If not, justify your answer.

EE445M/EE380L.12, Fall 2020 Midterm 4
Name:

Problem 2 (20 points): OS Core
Assume a basic priority-based OS kernel with the following InitStack() implementation used by
OS_AddThread() and a given user code running on top of the OS.
OS code:
long* InitStack(long *sp,
 void (*entry)(void))
{
 *(sp) = (long)0x01000000L;
 *(--sp) = (long)entry;
 *(--sp) = (long)0L;
 *(--sp) = (long)0L;
 *(--sp) = (long)0L;
 *(--sp) = (long)0L;
 *(--sp) = (long)0L;
 *(--sp) = (long)0L;
 *(--sp) = (long)0L;
 *(--sp) = (long)0L;
 *(--sp) = (long)0L;
 *(--sp) = (long)0L;
 *(--sp) = (long)0L;
 *(--sp) = (long)0L;
 *(--sp) = (long)0L;
 *(--sp) = (long)0L;
 return sp;
}

int NumThreads = 0;

int OS_AddThread(void(*task)(int),
 uint32_t priority)
{
 struct TCB* NewPt;

 … // allocate TCB and stack,
 … // insert in list

 NewPt->priority = priority;
 NewPt->threadID = NumThreads++;
 NewPt->sp = InitStack(NewPt->sp,
 task);

 …

 return 1;
}

User code:
 ; int Dump[100];
Dump
 DSD 100
 ; int DmpCnt = 0;
DmpCnt
 DCD 0

 ; void Thread1(int i) {
Thread1
 ; Dump[DmpCnt++] = i;
 LDR R1,=DmpCnt
 LDR R2,[R1]
 LDR R3,=Dmp
 STR R0,[R3,R2 LSL 2]
 ADD R2,R2,#1
 ; if(DmpCnt >= 100) DmpCnt = 0;
 CMP R2,#100
 BLT end
 MOV R2,#0
end
 STR R2,[R1]
 ; }
 BX LR

void Idle(int i) {
 // Do nothing
}

void main(void) {
 OS_Init();
 OS_AddThread(&Thread1, 0);
 OS_AddThread(&Idle, 1);
 OS_Launch(); // does not return
}

EE445M/EE380L.12, Fall 2020 Midterm 5
Name:

a) What will be the behavior of this program and what values will be stored in the Dump array
when run on the given OS kernel?

b) Show the modifications necessary in the OS code to: (1) pass the thread ID into each thread as
first parameter, and (2) execute all threads in an endless loop. You don’t need to list the full
code again, just indicate the lines that need to be changed or added/removed in the OS code
listing above. You are not allowed to make any changes to the user code, only the OS kernel.

EE445M/EE380L.12, Fall 2020 Midterm 6
Name:

Problem 3 (10 points): Race Conditions and Reentrance
a) Does the user program as given in Problem 2 above have any race condition? Why or why not?

If not, how can the race condition be resolved?

b) Is the Thread1() function in the user program from Problem 2 reentrant? Why or why not? If
not, how can it be made reentrant?

EE445M/EE380L.12, Fall 2020 Midterm 7
Name:

Problem 4 (10 points): Background Threads
Given an OS that uses PendSV for interrupt-based context switching where PendSV has the lowest
interrupt priority and the following OS_Sleep implementation as well as user program:
OS_Sleep code: User code:
void OS_Sleep(unit32_t sleep)
{
 // Mark thread as sleeping
 RunPt->sleepTime = sleep;
 // And switch to next thread
 OS_Suspend();
}

void OS_Suspend(void)
{
 ContextSwitch();
}

void ContextSwitch(void) {
 // Trigger PendSV
 NVIC_INT_CTRL_R=0x10000000;
}

void ThreadA(void) {
 while(1) { OS_Wait(&Sema); }
}
void ThreadB(void) {
 while(1) { printf(“Hello\n”); }
}
void BGThreadC() {
 OS_Signal(&Sema);
 OS_Sleep(5);
}

void Idle(void) { while(1){} }

void main(void) {
 OS_Init();
 OS_AddPeriodicThread(&BGThreadC,
 TIME_10MS, 0);
 OS_AddThread(&ThreadA, 0);
 OS_AddThread(&ThreadB, 1);
 OS_AddThread(&Idle, 2);
 OS_Launch(); // does not return
}

a) What will happen when OS_Signal is called in the background thread BGThreadC? Is there
any issue? If so, explain the issue and behavior. If not, why is there no issue?

EE445M/EE380L.12, Fall 2020 Midterm 8
Name:

b) What will happen when OS_Sleep is called in the background thread BGThreadC? Is there any
issue? If so, explain the issue and behavior. If not, why is there no issue?

Problem 5 (10 points): Miscellaneous
a) Assume two periodic real-time task sets, one with 3 tasks and 50% CPU utilization, and the

other with 5 tasks and 85% CPU utilization. Are these task sets schedulable under an RMS or
EDF strategy? Why or why not?

b) What is the role of the time slice in a priority scheduled OS? What effect will changing the
time slice have on system operation?

EE445M/EE380L.12, Fall 2020 Midterm 9
Name:

Problem 6 (30 points): Scheduling
Suppose you have the following three threads in your system. You can assume that the semaphore
is initialized to zero and that there is another Idle thread in the OS that does nothing (executes a
while(1){} loop) and runs last in the sequence or with lowest priority. For each of the OS
implementations below, show the order and sequence of events and thread executions until the
behavior repeats. Indicate any changes in the value of the semaphore Sema and threads changing
between active/ready (A), running (R), waiting (W) and sleeping (S) states (indicate spinning as
waiting). The time slice is 5ms and the first thread starts execution at time 0.
ThreadA(){
 while(1) {
 PD0 ^= 0x01;
 OS_Wait(&Sema);
 PD0 ^= 0x01;
 }
}

ThreadB(){
 while(1) {
 PD1 ^= 0x02;
 OS_Wait(&Sema);
 PD1 ^= 0x02;
 }
}

ThreadC() {
 while(1) {
 OS_Signal(&Sema);
 OS_Signal(&Sema);
 OS_Sleep(5);
 }
}

a) OS suing a round-robin scheduler with spinlock semaphores and threads running in the round-
robin order of ThreadA-ThreadB-ThreadC-Idle.

 A

 B

 C

Idle

Sema

 0 Time

b) OS using a round-robin scheduler with spinlock semaphores and threads running in the round-
robin order of ThreadC-ThreadB-ThreadA-Idle.

 A

 B

 C

Idle

Sema

 0 Time

EE445M/EE380L.12, Fall 2020 Midterm 10
Name:

c) OS using a priority scheduler with blocking semaphores and thread priorities of (highest to
lowest) ThreadA-ThreadB-ThreadC-Idle.

 A

 B

 C

Idle

Sema

 0 Time

d) OS using a priority scheduler with blocking semaphores and thread priorities of (highest to
lowest) ThreadC-ThreadB-ThreadA-Idle.

 A

 B

 C

Idle

Sema

 0 Time

	Problem 1 (20 points): Semaphores
	Problem 2 (20 points): OS Core
	Problem 3 (10 points): Race Conditions and Reentrance
	Problem 4 (10 points): Background Threads
	Problem 5 (10 points): Miscellaneous
	Problem 6 (30 points): Scheduling

