

Pointe	er-Based	MAC	Q
	MACQ be	fore x[0] x(n-8) x[1] x(n-9)	MACQ after x[0] x(n-9) x[1] x(n-10)
unsigned short x[32], // two	conies	x[2] x(n-10)	x[2] x(n-11)
unsigned short *Pt: // poin	ter to current	x[3] x(n-11)	x[3] x(n-12)
ungigned short Sum: // sum	of last 16 samples	x[4] x(n-12)	x[4] x(n-13)
woid LPE Trit(woid)	or rast to samples	x[5] x(n-13) x[6] x(n-14)	$x_1 = 1$
$P_{t} = c_{x}[0], c_{y} = 0.$	P	t x[7] x(n-15)	x(n-1)
$FC = \alpha x[0], \text{ sum} = 0,$		x[8] → x(n)	x[8] x(n-1)
	.	x[9] x(n-1)	x[9] x(n-2)
// calculate one filter outpu	-	x[10] x(n-2)	x[10] x(n-3)
// average previous 16 sample	5	x[11] x(n-3) x[12] x(n-4)	x[11] x(n-4)
// Called at sampling rate		x[13] x(n-5)	x[13] x(n-6)
// Input: new ADC data	_	x[14] x(n-6)	³ x[14] x(n-7)
// Output: filter output, DAC	data	x[15] x(n-7)	x[15] x(n-8)
unsigned short LPF_Calc(unsig	ned short newdata){	x[16] x(n-8)	x[16] x(n-9)
Sum = Sum - *(Pt+16); // s	ub 16 samples ago	x[17] x(n-9)	x[17] x(n-10)
if(Pt == &x[0]){		x[19] x(n-11)	x[10] x(n-11) x[19] x(n-12)
Pt = &x[16]; // w	rap	x[20] x(n-12)	x[20] x(n-13)
<pre>} else{</pre>		x[21] x(n-13)	x[21] x(n-14)
Pt; // m	ake room for data	x[22] x(n-14)	[22] x(n-15)
}		x[23] x(n-15)	x[29] → x(n)
*Pt = *(Pt+16) = newdata; /	/ two copies	x[24] x(n) x[25] x(n-1)	x[24] x(n-1) x[25] x(n-2)
return Sum/16;	_	x[26] x(n-2)	x[26] x(n-3)
}		x[27] x(n-3)	x[27] x(n-4)
<i>*</i>		x[28] x(n-4)	x[28] x(n-5)
		x[29] x(n-5)	x[29] x(n-6)
Lecture 7	J. Valvano, A. Gerstlaue EE445M/EE380L.6	x[31] x(n-7)	x[30] x(n-7) x[31] x(n-8)

		Chedia Duller	
	Array h[]	Array xcirc[]	
0	h[0]	x[n - newest]	
1	h[1]	x[n-newest+1]	
:	÷	:	
		x[n-1]	
newest		x[n]	
oldest		x[n-N+1]	
		x[n-N+2]	
:	÷	:	
N-2	h[N-2]	x[n - newest - 2]	
N-1	h[N-1]	x[n - newest - 1]	

