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Reference: T. Anderson, M. Dahlin, “Operating Systems: Principles and Practice”

Operating System

• Manage computer system resources
– CPU, processors

• Threads

– Storage, flash/disc
• Files

– Memory, RAM
• Heap, processes
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Memory Management
• Sharing

– Per-thread: stack
– Per-program: heap
– Per-system: process

• Allocation
– Static, permanent

• Globals, code
– Dynamic, temporary

• Stack, heap, 
process swapping 

• Protection
– Access control
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Fragmentation
• Internal

– Wasted space inside allocated region
– Convenience of the operating system
– Contains no information
– Wasted in order to improve speed or provide for a simpler 

implementation 
• External

– Unusable storage is outside the allocated regions
– Largest block that can be allocated is less than the total 

amount of free space
– Occurs because memory is allocated in contiguous blocks
– Occurs over time as free storage becomes divided into 

many small pieces
– Worse when application/OS allocates/deallocates blocks 

of storage of varying sizes
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Heap
• Separate piece of main memory

– “Memory region” in μCOS-II

• Managed by the operating system 
– Initialization Heap_Init called by OS 

during the initialization phase

• Used for temporary allocation
– Allocation Heap_Malloc

called by user or OS

– Deallocation Heap_Free
called by user or OS
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Dynamic Memory Allocation
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void Function(void){ 
int i;
int *pt;
// allocate 20 words
pt = (*int)Heap_Malloc(4*20); 
for(i = 0; i < 20; i++)
// put data into array
pt[i] = i; 

Heap_Free(pt);
}

Before malloc After malloc After free

PtPt Pt

null

nothing

int *Pt;
void Begin(void){
// allocate 20 words
Pt = (*int)Heap_Malloc(4*20);

}
void Use(void){ int32_t i;
for(i = 0; i < 20; i++)
// put data into array
Pt[i] = i;

}
void End(void){
Heap_Free(Pt);

}

int pt[20];
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Heap Manager
• Heap_Init

– Allocate & initialize heap memory
• Statically allocated storage assigned by compiler

static long Heap[500]; // 2000 byte heap

• Heap_Malloc
– Allocate block in heap free space

• Must use contiguous allocation

• First fit, best fit, worst fit

• Heap_Free
– Reclaim block into heap free space
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Heap_4C123.zip

Heap Manager Example
• Blocks of variable size

– Size counter at beginning/end of each block
• Positive if used (allocated), negative if free

– Internal fragmentation
• Overhead for size header/trailer
• Allocated in multiple of 4 byte words
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Heap_Alloc

• Allocate block
– Find a free block

• Uses first fit

– Free block is divided into two parts
• New free block is smaller

– A pointer to the allocated block is returned

– Block may not be large enough to split
• Allocate the big block, internal fragmentation
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• Four cases
– No merge

– Merge above

– Merge below

– Merge both above 
and below 
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Knuth’s Buddy Allocation

• Maintain heap as collection of blocks each 
with a size of 2m

• When user requests a block of size n
– Find smallest block with 2m ≥ n

– Split block into half until best fit

• When user releases a block
– Merge with other half (buddy block of same 

order), if possible
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Memory Protection
• Divide memory into regions

– Allocated heap blocks

– Thread/process data & code segments

• Define access control per region
– Read-only/read-write

– Execute/no-execute

• Enforce access control in hardware
– On every memory access (load/store)

– Permission fault exception
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TM4C123 Memory Protection
• Memory Protection Unit (MPU)

– 8 separate memory regions
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Memory Region Attributes
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Access Privileges

• Memory management fault on violation
– Can be caught by OS in an interrupt handler
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Thread-Protected Mode

• Only current thread
has memory access
– Code

– Data/heap, stack

– OS kernel traps

• On context switch
– Re-assign MPU

permissions

– Extra overhead
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μCOS Thread Groups

• Group of threads
protected jointly
– Called “process” in 
μCOS-II

– Group-local shared
memory region

• Inter-group communication
– Through OS kernel

– Special shared memory areas
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Multi-Programming
• Process

– Whole program in execution
– Code, data, heap
– One or more threads

• Multi-processing
– Multiple processes/programs 

in main memory
– OS schedules processes & 

threads
– Process-level protection
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Processes
• OS manages processes

– Scheduling

– Memory

• Independent programs
– Separately compiled

– Logical address space

• Brought in/out of memory
– On load/exit

– Temporarily swapped in/out by OS
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Process Creation
• Unix

– fork()
• Create copy of current process

– exec()
• Replace current process with image on disk

– init process (process ID, PID = 0/1)
• Mother of all processes created by OS

• Windows
– CreateProcess()

• Create new process and load program image
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Process Termination

• Unix
– exit()

• Terminate current process

• OS frees all resources, returns exit status

• Windows
– ExitProcess()

• Likewise
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Address Translation

• Logical addresses in process
– Compiler generated programs on disk

– Hard-coded absolute addresses

• Physical addresses in main memory
– Map logical into physical addresses

– Compile time: generate for known location

– Load time: relocation by OS (dynamic linker)

– Run time: hardware support, virtual addresses
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Memory Management Unit (MMU)

• Many ways to do this translation…
– Start with old, simple ways
– Progress to current techniques

MMUProcessor
Physical
memory

Virtual
addresses

Physical
addresses
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Fixed Partitions
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Base Register P1
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Allocation?
Fragmentation?
Overhead?
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Variable Partitions

P3’s Base
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Segmentation
• Partition memory into logically related units

– Module, procedure, stack, data, file, etc.
– Virtual addresses become <segment #, offset>
– Units of memory from programmer’s perspective

• Natural extension of variable-sized partitions
– Variable-sized partitions = 1 segment/process
– Segmentation = many segments/process

• Hardware support
– Multiple base/limit pairs, one per segment 

(segment table)
– Segments named by #, used to index into table
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Segment Lookups
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Paging
• Paging solves the external fragmentation 

problem by using fixed sized units in 
both physical and virtual memory

Virtual Memory

Page 0

Page 1
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Virtual Memory
• Programmers (and processes) view memory 

as one contiguous address space 
– From 0 through N
– Virtual address space (VAS)

• In reality, pages are scattered throughout 
physical storage

• The mapping is invisible to the program
• Protection is provided because a program 

cannot reference memory outside of its VAS
– The address “0x1000” maps to different physical 

addresses in different processes
Lecture 12 J. Valvano, A. Gerstlauer 
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Page Lookups

Page frame

Page number Offset

Virtual Address

Page Table
Page frame Offset

Physical Address

Physical Memory

0x2

4680x7

468

20-bit address, 4K pages
Offset is 12 bits
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Page Tables
• Page tables completely define the mapping between 

virtual pages and physical pages for an address space
• Each process has address space & page table
• Page tables are data structures maintained in the OS
• Accessible by MMU for hardware translation

Virtual Memory
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Physical Memory
Page Table
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Page Table Size

• How big does the page table need to be? 
– 20-bit address 

• 12 bit page offset (4 kibibyte page size) 

• 8 bit page number 

– 256 pages, each entry is 12 bits 

– 32-bit address 
• 14 bit page offset (16 kibibyte page size) 

• 18 bit page number 

– 218 pages, each entry is 14 bits 
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Page Table Entries (PTEs)

• Page table entries control mapping
– The Modify bit says whether or not the page has been written

• It is set when a write to the page occurs

– The Reference bit says whether the page has been accessed
• It is set when a read or write to the page occurs

– The Valid bit says whether or not the PTE can be used
• It is checked each time the virtual address is used

– The Protection bits say what operations are allowed on page
• Read, write, execute

– The page frame number (PFN) determines physical page

R VM Prot Page Frame Number

1 1 1 2 20
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Segmentation and Paging
• Can combine segmentation and paging

– The x86 supports segments and paging

• Use segments to manage logically related units
– Module, procedure, stack, file, data, etc.
– Segments vary in size, but usually large (>1 page)

• Pages to partition segments into fixed size chunks
– Segments easier to manage within physical memory

• Segments become “pageable” – rather than moving segments into and out of 
memory, just move page portions of segment

– Need to allocate page table entries only for those 
pieces of the segments that have themselves been 
allocated

• Tends to be complex…
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Paging Limitations

• Can still have internal fragmentation
– Process may not use memory in multiples of a page

• Memory reference overhead
– 2 references per address lookup (page table, then memory)
– Solution – use a hardware cache of lookups (more later)

• Memory required to hold page table can be significant
– Need one PTE per page
– 32 bit address space w/ 4KB pages = 220 PTEs
– 4 bytes/PTE = 4MB/page table
– 25 processes = 100MB just for page tables!
– How to reduce page size?

• How do we only map what is being used?
– Dynamically extending page table, but fragmentation
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Two-Level Page Tables

Page table

Master page number Secondary

Virtual Address

Master Page Table

Page frame Offset

Physical Address

Physical Memory

Offset

Page frame

Secondary Page Table
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Two-Level Page Tables
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Addressing Page Tables
• Where do we store page tables?

– Physical memory
• Easy to address, no translation required
• But, allocated tables consume memory for lifetime of VAS

– Virtual memory (OS virtual address space)
• Cold (unused) page table pages can be paged out to disk
• But, addressing page tables requires translation
• How do we stop recursion?
• Do not page the outer page table (called wiring)

– If we’re going to page the page tables, might as 
well page the entire OS address space, too

• Need to wire special code and data (fault, int handlers)
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Demand Paging
• Pages can be moved between memory and disk

– Use disk to provide more virtual than physical memory

• OS uses main memory as a page cache of all the 
data allocated by processes in the system
– Initially, pages are allocated from memory
– When memory fills up, allocating a page in memory 

requires some other page to be evicted from memory
• Why physical memory pages are called “frames”

– Evicted pages go to disk
• Where? The swap file/backing store

– The movement of pages between memory and disk is 
done by the OS, and is transparent to the application

• But expensive!
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Efficient Translations
• Original page table scheme already doubled the 

cost of doing memory lookups
– Lookup into page table + fetch the data

• Two-level page tables triple the cost!
– 2x lookups into page tables, a third to fetch the data
– And this assumes the page table is in memory

• How can we use paging but also have lookups 
cost about the same as fetching from memory?
– Cache translations in hardware
– Translation Lookaside Buffer (TLB)
– TLB managed by Memory Management Unit (MMU)
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Translation Lookaside Buffer (TLB)

CPU

TLB 
(MMU)

Main Memory

Cache of PTEs

Typical Details:

Fully associative

Small (Just 32-128 PTEs)

Separate Instruction and Data TLBs

Two-level (256-512 combined I/D) 

Full Page Table 
in Memory

Virtual 
Addresses

Physical 
Addresses

Context switch?

Lecture 12 J. Valvano, A. Gerstlauer 
EE445M/EE380L.6

41Source: G. M. Voelker, UCSD, 
CSE 120 – Lecture 10 – Paging

Memory Access Example

• Process is executing on CPU, issues a read to an address
– What kind of address is it?  Virtual or physical?

• The read goes to the TLB in the MMU
1. TLB does a lookup using the page number of the address

2. Common case is that the page number matches, returning a page 
table entry (PTE) for the mapping for this address

3. TLB validates that the PTE protection allows reads (in this case)

4. PTE specifies which physical frame holds the page

5. MMU combines physical frame and offset into a physical address

6. MMU then reads from that physical address, returns value to CPU

• Note: This is all done by the hardware
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TLB Miss
• If the TLB does not have mapping:

1. MMU loads PTE from page table in memory 
• Hardware managed TLB [x86] 

• OS has already set up the page tables so that the hardware can 
access it directly, otherwise not involved

2. Trap to the OS 
• Software/OS managed TLB [MIPS, Alpha, Sparc, PowerPC]

• OS does lookup in page table, loads PTE into TLB

• OS returns from exception, TLB continues

• Replace existing PTE in TLB
– Done in hardware, e.g. least recently used

– At this point, PTE for the address in the TLB
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Page Fault
• PTE can indicate a protection fault

– Read/write/execute – operation not permitted
– Invalid – virtual page not allocated/not in memory

• TLB traps to the OS (OS takes over)
– R/W/E violation

• OS sends fault back up to process, or intervenes

– Invalid
• Virtual page not allocated in address space

– OS sends fault to process (e.g., segmentation fault)

• Page not in physical memory
– OS allocates frame, reads from disk
– Maps PTE to physical frame, update TLB
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Advanced Functionality

• Shared memory
– PTEs of two processes point to same page

• Copy on Write (fork())
– PTEs of two processes point to same page

– Copy page only on first write

• Mapped files
– Map pages from file on disk into memory
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Memory Management Summary
• Often not used in embedded devices

– Overhead
• Page table storage, Context switching

– Unpredictable timing
• TLB misses, Page faults

• Static memory management
– Static data allocation, no heap
– No MMU/paging

• Compile/load time relocation (optionally paged)
• Hardware for fixed/variable partition support
• Segmenting & swapping still possible
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