
The University of Texas at Austin
Department of Electrical and Computer Engineering

Real-Time Systems / Real-Time Operating Systems
EE445M/EE380L.6, Spring 2015

Final Exam
Date: May 14, 2015

UT EID:

Printed Name:

Last, First

Your signature is your promise that you have not cheated and will not cheat on this exam, nor
will you help others to cheat on this exam:

Signature:

Instructions:

• This exam has 10 pages. Please make sure that you have all sheets.
• Open book and open notes.
• No calculators or any electronic devices (turn cell phones off).
• Please be sure that your answers to all questions (and all supporting work that is required)

are contained in the space (boxes) provided. Anything outside the boxes will be ignored.
• For all questions, unless otherwise stated, find the most efficient (time, resources)

solution.

Problem 1 15

Problem 2 15

Problem 3 15

Problem 4 10

Problem 5 10

Problem 6 20

Problem 7 15

Total 100

EE445M/EE380L.6, Spring 2015, Final Exam 2
Name:

Problem 1 (15 points): Hold and wait
a) In class we discussed deadlock prevention by ensuring that hold and wait conditions can

never occur. Show the C implementation of the spinlock realization of OS_Wait2() and
OS_Signal2() functions that simultaneously acquire and release two semaphores. Your
implementation must ensure that neither routine is ever waiting (spinning) for one semaphore
while holding the other. Also, both functions must only return once both semaphores have
been acquire or released, respectively.

void OS_Wait2(long *s1, long *s2)
{

}

void OS_Signal2(long *s1, long *s2)
{

}

b) How could your OS ensure that programmers never accidentally create a hold-and-wait
condition, i.e. wait for two semaphores by simply calling the normal OS_Wait() twice? Just
describe the idea, no code needed.

EE445M/EE380L.6, Spring 2015, Final Exam 3
Name:

Problem 2 (15 points): Real-Time Scheduling
Consider a priority scheduled real-time system running three periodic tasks with the following
priorities and execution times. You can assume zero context switch and interrupt overhead.

Task Priority Execution Time Period
Airbag (A) High 10μs 30μs

Warning (W) Medium 20μs 60μs
Engine (E) Low 30μs 120μs

a) Does this task set follow a rate monotonic scheduling (RMS) strategy? If so, why? If not,
why not?

b) Draw the task executions over time. Assume that all tasks become ready to execute, i.e. start
their first period at time zero. Draw one iteration of the schedule until it starts repeating. Is
the task set schedulable, i.e. do all task finish their execution before the start of their next
period (=deadline)? Is there any priority inversion? If so, mark the duration of the inversion.

 A

 W

 E

c) Now assume that tasks A and E share a mutex (binary semaphore) that they acquire at the
beginning of each execution and hold for the whole duration of their execution. Draw one
iteration of the schedule. Is the task set schedulable? Is there any priority inversion? If so,
mark the beginning and end of the inversion.

 A

 W

 E

Time

Time

EE445M/EE380L.6, Spring 2015, Final Exam 4
Name:

Problem 3 (15 points): Signal Processing
You are asked to design a signal processing chain with typical blocks as given below:

Analog
LPF

Digital
FilterADC

x(t) x1[n] x2[n]

The maximum sampling rate of the ADC is limited to 12kHz. The frequency domain spectrum of
the input x(t) is as shown below. The desired signal is in the 1kHz - 4kHz band. There are
interferers at 500Hz and 10kHz. You can assume that there are no other signals (noise, etc).

a) Choose a sampling rate (fs) for the ADC (< 12kHz) and give the cut-off frequencies of the

analog low-pass filter (LPF) and of a digital filter of your choice such that x2[n] has minimal
components of the interferers.

ADC fs

Analog LPF cutoff

Digital filter
response type & cutoff

b) Why do we need the analog filter?

EE445M/EE380L.6, Spring 2015, Final Exam 5
Name:

c) Is there a way to design the system without using an analog filter? If so, give a range of
ADC sampling frequencies that can be used so that your interferer doesn't destroy your
signal. Pick a sampling frequency and give the cut-off frequencies for the digital filter
such that there are minimal interferer components in x2[n]. Hint: From the sampling
theorem, it follows that after sampling, X(f+nfs) = X(f), where n is an integer. Hence,
X(fs/2 + f) = X(fs/2 - f), i.e. the sampled signal is symmetrical around fs/2.

Possible fs range

ADC fs and
Digital cutoff

Problem 4 (10 points): Filter Design and Analysis
a) Given the following pole-zero plots, sketch the frequency response of the corresponding

filters, i.e. the magnitude of the gain of the filter’s transfer function over the frequency f.
Also indicate whether the filters are analog or digital, and whether they are IIR or FIR.

b) Draw the pole-zero plot

of a digital 60Hz notch
filter that uses an ADC
sampling frequency of
240Hz.

EE445M/EE380L.6, Spring 2015, Final Exam 6
Name:

Problem 5 (10 points): Filesystem
In class, we discussed the Unix/Linux filesystem, which uses a form of indexed allocation that
stores separate index tables for each file in so-called inodes on disk. Each file is associated with
exactly one inode given in its corresponding directory entry. Each inode contains meta-
information about the file (such as permissions) next to the index table of allocated blocks.
Assume that the master directory is stored in disc block 0, followed by up to N inodes.
Furthermore, assume that disc blocks have a size of 1kB, that 8 bytes in each inode are used to
store meta-information, and that each block index number in the inodes has 32 bits.

a) Does this filesystem have internal or external
fragmentation? If so, why? If not, why not?

Internal
fragmentation

External
fragmentation

b) What is the largest supported disk size? What is the largest file that can be created?

Largest disk size

Largest file size

c) How could the file system be changed to support larger file sizes?

 Disk
0 Master Dir
1 inode 0
2 inode 1
…
N inode N-1
…
…
42
43
44
45
46
47
48
…

 inode 1
0

File Info
1
2 46
 3 42
4 45
5 -
… -

 Directory
 Name
 inode
 “A”, 1

 -

 -

EE445M/EE380L.6, Spring 2015, Final Exam 7
Name:

Problem 6 (20 points): Distributed Barrier
In the midterm, we developed an implementation of a OS_Barrier() synchronization between N
tasks running on the same microcontroller. You are now asked to implement a distributed barrier
that synchronizes N microcontrollers connected via a single, shared CAN bus. You can assume
that the CAN bus will not be used for any purpose other than realizing the distributed barrier.
Make any additions or changes to the CAN starter code shown below. Then show the C code for
a spinlock realization of the OS_Barrier() function. Clearly indicate modifications that are
specific to the microcontroller the code is running on. Hint: keep in mind that the CAN is a
shared bus that supports broadcast operations where all connected computers, including the
sender itself, can simultaneously receive any desired message on the bus.
#define N …

// Message IDs
#define RCV_ID 2
#define XMT_ID 4

// setup object in CAN controller message RAM
void static CAN0_Setup_Message_Object(uint32_t MessageID,
 uint32_t MessageFlags, uint32_t MessageLength,
 uint8_t * MessageData, uint32_t ObjectID, tMsgObjType eMsgType) {
 …
}

// Initialize CAN port
void CAN0_Open(void) {
 …

 CANInit(CAN0_BASE);
 CANBitRateSet(CAN0_BASE, 80000000, CAN_BITRATE);
 CANEnable(CAN0_BASE);
 CANIntEnable(CAN0_BASE, CAN_INT_MASTER|CAN_INT_ERROR|CAN_INT_STATUS);

 // Set up filter to receive 4-byte message with RCV_MSG_ID
 CAN0_Setup_Message_Object(RCV_ID, MSG_OBJ_RX_INT_ENABLE, 4,
 NULL, RCV_ID, MSG_OBJ_TYPE_RX);

 NVIC_EN1_R = (1 << (INT_CAN0 - 48)); //IntEnable(INT_CAN0);
 return;
}

EE445M/EE380L.6, Spring 2015, Final Exam 8
Name:

// send 4 bytes of data to other microcontroller
void CAN0_SendMessage(uint8_t *data){
 CAN0_Setup_Message_Object(XMT_ID, NULL, 4, data, XMT_ID,
 MSG_OBJ_TYPE_TX);
}

// The CAN controller interrupt handler.
void CAN0_Handler(void){
 uint32_t ulIntStatus, ulIDStatus;
 int i;
 tCANMsgObject xTempMsgObject;
 xTempMsgObject.pucMsgData = data;
 ulIntStatus = CANIntStatus(CAN0_BASE, CAN_INT_STS_CAUSE); // cause?
 if(ulIntStatus & CAN_INT_INTID_STATUS){ // receive?
 ulIDStatus = CANStatusGet(CAN0_BASE, CAN_STS_NEWDAT);
 for(i = 0; i < 32; i++){ //test every bit of the mask
 if((0x1 << i) & ulIDStatus){ // if active, get data
 CANMessageGet(CAN0_BASE, (i+1), &xTempMsgObject, true);
 if(xTempMsgObject.ulMsgID == RCV_ID){

 }
 }
 }
 }
 CANIntClear(CAN0_BASE, ulIntStatus); // acknowledge
}

void OS_Barrier()
{

}

EE445M/EE380L.6, Spring 2015, Final Exam 9
Name:

Problem 7 (15 points): Motor Interface
You are asked to design the interface for a DC motor that has a time constant of 40ms.

a) Design and interface an H-bridge using N- and P-type power BJT/Darlington transistors. Add
resistors as necessary, but do not add any other components not already shown.

M

TM4C123

PB6
PB7

Forward
current

Reverse
current

b) Show the output signals you need to create on the microcontroller’s PB6 and PB7 ports to
drive the motor in forward and backward direction at 1/4 of its maximum power. Also
indicate (e.g. using dashed lines) how the signals would have to change to go to 3/4 power in
either direction.

Forward

Time0 1ms 2ms 3ms 4ms

PB7

PB6

Reverse

Time0 1ms 2ms 3ms 4ms

PB7

PB6

EE445M/EE380L.6, Spring 2015, Final Exam 10
Name:

c) For any PWM port that you use, what divider should the clock prescaler be set to (/2, /4, /8,
etc.) and what period and duty cycle values should the PWM_LOAD and PWM_CMPA
registers be loaded with, respectively, to generate the desired signals with maximum
resolution? Assume a 80Mhz bus clock.

 ¼ speed ahead ¾ speed ahead ¼ speed astern ¾ speed astern

PWM Divider

PWM_x_LOAD

PWM_x_CMPA

	Problem 1 (15 points): Hold and wait
	Problem 2 (15 points): Real-Time Scheduling
	Problem 3 (15 points): Signal Processing
	Problem 4 (10 points): Filter Design and Analysis
	Problem 5 (10 points): Filesystem
	Disk
	inode 1
	Directory
	0
	Name
	Master Dir
	0
	File Info
	1
	inode 0
	1
	inode
	46
	2
	inode 1
	2
	“A”, 1
	42
	 3
	…
	-
	45
	4
	inode N-1
	N
	-
	-
	5
	…
	-
	…
	…
	42
	43
	44
	45
	46
	47
	48
	…
	Problem 6 (20 points): Distributed Barrier
	Problem 7 (15 points): Motor Interface

