
The University of Texas at Austin
Department of Electrical and Computer Engineering

Real-Time Systems / Real-Time Operating Systems
EE445M/EE380L.6, Spring 2015

Midterm Solutions
Date: March 12, 2015

UT EID:

Printed Name:

Last, First

Your signature is your promise that you have not cheated and will not cheat on this exam, nor
will you help others to cheat on this exam:

Signature:

Instructions:

• Open book and open notes.
• No calculators or any electronic devices (turn cell phones off).
• Please be sure that your answers to all questions (and all supporting work that is required)

are contained in the space (boxes) provided.
• Anything outside the boxes will be ignored in grading.
• For all questions, unless otherwise stated, find the most efficient (time, resources)

solution.

Problem 1 10

Problem 2 15

Problem 3 20

Problem 4 20

Problem 5 10

Problem 6 25+10

Total 100+10

EE445M/EE380L.6, Spring 2015, Midterm 2
Name:

Problem 1 (10 points): Reentrance
Given the following C code and the assembly code generated by the compiler for a library
function that converts an integer into a bit string:

; bit.s
bit2str:
 MOV r1,r0
 MOVS r0,#0x00
 LDR r3,[pc,#28] ; @0x0564
 STRB r0,[r3,#0x20]
 MOVS r2,#0x1F
 B 0x0000055C
0x054E:
 AND r0,r1,#0x01
 ADDS r0,r0,#0x30
 LDR r3,[pc,#12] ; @0x0564
 STRB r0,[r3,r2]
 ASRS r1,r1,#1
 SUBS r2,r2,#1
0x055C:
 CMP r2,#0x00
 BGE 0x0000054E
 LDR r0,[pc,#0] ; @0x0564
 BX lr
0x0564:
 DCW 0x1004
 DCW 0x2000

// bit.c

static char buf[33];

// Example use case:
// printf(“V: %s\n”, bit2str(v));

const char* bit2str(int b) {
 int i;
 buf[32] = 0;
 for(i=31; i>=0; i--) {
 buf[i] = '0' + (b & 0x01);
 b >>= 1;
 }
 return buf;
}

Is the bit2str() function reentrant? If yes, why? If not, explain why not (provide a
counterexample), and indicate how could it be changed to make it reentrant.

No, it is not reentrant. The function includes a write-read access to a shared, global variable.

To make it reentrant, we need to change the library interface such that the buffer is owned by the
caller:
 const char* bit2str(char* buf, int b);

Note that using a mutex semaphore to protect the global access will not work here – the function
returns a (read-only) pointer to the shared resource. As such. the critical section extends beyond
the end of the function into the caller until the last time the pointer is accessed..

// bit.h

const char* bit2str(int b);

EE445M/EE380L.6, Spring 2015, Midterm 3
Name:

Problem 2 (15 points): Stack Size
In class, we talked about estimation of stack sizes. Given the C code and assembly code
generated by the compiler as shown below. Assume that the ADC_In() and GPIO_Out()
functions are driver code that only accesses hardware registers.

Thread (0x0544):
 SUB sp,SP,#0x1000
0x054A:
 BL.W ADC_In (0x0000040C)
 MOV r1,r0
 MOV r0,sp
 BL.W filter (0x0000055E)
 MOV r4,r0
 BL.W GPIO_Out (0x00000410)
 B 0x0000054A
filter (0x055E):
 PUSH {r4-r6,lr}
 MOV r4,r0
 MOV r6,r1
 MOVW r5,#0x3FF
 B 0x00000576
0x056A:
 SUBS r0,r5,#1
 LDR r0,[r4,r0,LSL #2]
 STR r0,[r4,r5,LSL #2]
 SUBS r5,r5,#1
0x0576:
 CMP r5,#0x00
 BGT 0x0000056A
 STR r6,[r4,#0x00]
 MOV r0,r4
 BL.W fir (0x00000584)
 POP {r4-r6,pc}
fir (0x0584):
 PUSH {r4,lr}
 MOV r2,r0
 MOVS r0,#0x00
 MOVS r1,#0x00
 B 0x0000059E
0x058E:
 LDR r3,[pc,#24] ; @0x000005A8
 LDR r3,[r3,r1,LSL #2]
 LDR r4,[r2,r1,LSL #2]
 MLA r0,r3,r4,r0
 ADDS r1,r1,#1
0x059E:
 CMP r1,#0x400
 BLT 0x0000058E
 POP {r4,pc}
0x05A8:
 DCW 0x0600
 DCW 0x2000

const int h[1024] = {
 …
};

int fir(int x[]) {
 int i;
 int r = 0;
 for(i=0; i<1024; i++)
 r += h[i] * x[i];
 return r;
}

int filter(int x[], int v) {
 int i;
 for(i=1023; i>0; i--)
 x[i] = x[i-1];
 x[0] = v;
 return fir(x);
}

void Thread(void) {
 int v;
 int x[1024];

 while(1) {
 v = ADC_In();
 GPIO_Out(filter(x, v));
 }
}

EE445M/EE380L.6, Spring 2015, Midterm 4
Name:

a) Are the fir() and filter() functions reentrant? Why or why not?

Yes, both are reentrant. They do not have any write access to any global resource.fir()
accesses a shared variable (h[]), but read only, so no critical section.

b) Draw the function-by-function call graph for the Thread.

Thread -> ADC_In
 |-> filter -> fir
 \-> GPIO_Out

c) Determine the minimum amount of stack space needed to avoid stack overflow when
running the Thread as a foreground thread in a preemptively scheduled system. Show
your work and explain how you arrive at the result.

Stack needs of individual functions:
 fir: 2*4 = 8 bytes
 filter: 4*4 = 16 bytes
 Thread: 1024 * 4 = 4096 bytes
 ADC_In and GPIO_Out are assumed to require no stack space

With this, at the deepest point of the call graph, i.e. when executing fir(), the stack will
have 8+16+4096 = 4120

In addition, if we get preempted while executing fir(), we need an additional 16*4=64
bytes to save the current thread’s context (16 register).

So the minimum stack size needed for Thread is 4184 bytes.

EE445M/EE380L.6, Spring 2015, Midterm 5
Name:

Problem 3 (20 points): Weighted Round-Robin Scheduler
You are asked to implement a system that uses a weighted, preemptive round-robin scheduler.
Each foreground thread is thereby associated with an integer weight parameter that specifies the
number of time slices the thread is supposed to run before switching over to the next thread in
sequence. Starting from the basic round-robin OS code, show the necessary modifications
(insertions and/or deletions) to add weighted functionality. Maintain a constant SysTick interrupt
period, i.e. you are not allowed to change the reload value. Assume that non-cooperative
spinlock sempahores are used and no sleeping functionality is needed.

SysTick_Handler

 CPSID I

 PUSH {R4-R11}

 LDR R0, =RunPt

 LDR R1, [R0]
LDR R2,[R1,#12] ; load ticks
SUBS R2,#1 ; decrement
STR R2,[R1,#12] ; and write back
BNE skip ; if > 0, keep running
LDR R2,[R1,#8] ; else reset w/ weight
STR R2,[R1,#12] ; and write back -> ticks

 STR SP, [R1] ; and perform switch

 LDR R1, [R1,#4]

 STR R1, [R0]

 LDR SP, [R1]

skip:

 POP {R4-R11}

 CPSIE I

 BX LR

struct tcb {
 long *sp;
 struct tcb *next;
 unsigned int weight; // greater than 0

 unsinged int ticks;

}

struct tcb* RunPt;

EE445M/EE380L.6, Spring 2015, Midterm 6
Name:

Problem 4 (20 points): Real-Time Performance
Consider a priority scheduled real-time system running three interrupt-triggered foreground tasks
with the following priorities and worst-case execution times. All tasks are sporadic/aperiodic
with at least 100μs between consecutive activations of the same task. You can assume zero
context switch and interrupt overhead.

Task Priority Execution Time
Airbag High 10μs

Warning Medium 20μs
Engine Low 30μs

a) What is the worst-case latency (time between triggering the interrupt and the task starting
to execute) and worst-case response time (between interrupt trigger and task finishing
execution) for each task?

 Max. Latency Max. Response Time

Airbag 0μs 10μs

Warning 10μs 30μs

Engine 30μs 60μs

b) Now consider that the Warning and Engine tasks access a shared resource that is
protected with a blocking mutex semaphore. Assuming each task does not hold the mutex
for longer than 5μs, what are the worst-case latencies and response times?

 Max. Latency Max. Response Time

Airbag 0μs 10μs

Warning 10μs 35μs

Engine 30μs 60μs

c) Assuming instead that the Airbag and Engine tasks access a shared mutex for no longer
than 5μs each, what are the worst-case latencies and response times?

 Max. Latency Max. Response Time

Airbag 0μs 35μs

Warning 10μs 30μs

Engine 30μs 60μs

d) What do we call the effect that causes changes in latencies/response times between a)-c)?

Priority inversion

EE445M/EE380L.6, Spring 2015, Midterm 7
Name:

Problem 5 (10 points): Dining Philosophers
In class, we talked about the classical Dining Philosophers
problem. Assume five philosophers are sitting at a round
table with five plates and five forks. The philosophers
continuously alternate between eating and thinking. To eat,
a philosopher needs two forks. The synchronization problem
is that each fork can only be held by one philosopher at a
time. The goal is to find a solution in which it is guaranteed
that no philosopher will starve, while allowing as many
philosophers to eat at the same time as possible.

Given the following coding of this problem in which
philosophers are represented by threads and forks represent
shared resources protected by semaphores:
Thread0() {
 for(;;) {
 think();
 wait(&f0);
 wait(&f1);
 eat();
 signal(&f1);
 signal(&f0);
 }
}

Thread1() {
 for(;;) {
 think();
 wait(&f1);
 wait(&f2);
 eat();
 signal(&f2);
 signal(&f1);
 }
}

Thread2() {
 for(;;) {
 think();
 wait(&f2);
 wait(&f3);
 eat();
 signal(&f3);
 signal(&f2);
 }
}

Thread3() {
 for(;;) {
 think();
 wait(&f3);
 wait(&f4);
 eat();
 signal(&f4);
 signal(&f3);
 }
}

Thread4() {
 for(;;) {
 think();
 wait(&f4);
 wait(&f0);
 eat();
 signal(&f0);
 signal(&f4);
 }
}

Is this a valid solution to the problem that satisfies all constraints? If yes, prove it. It no, explain
why not (provide a counterexample), and show modified code that provides a valid solution.

The code has a potential deadlock. Assume the each thread grabs its first semaphore and then
gets preempted before being able to acquire its second semaphore. At that point, there will be a
circular hold-and-wait dependency chain.

There are two solutions to this problem:

1) Remove the circular wait condition by making sure all threads access all semaphores in
the same order. In other words, change Thread4 to
 Thread4() {
 for(;;) {
 think();
 wait(&f0);
 wait(&f4);
 …

2) Introduce an extra counting semaphore to make sure that no more than 4 threads are
trying eat at the same time. Introduce a counting semaphore “limit”, initialized to 4:
 ThreadX() {
 for(;;) {
 think();
 wait(&limit);
 wait(&fx);
 wait(&fx+1);
 …

EE445M/EE380L.6, Spring 2015, Midterm 8
Name:

Problem 6 (25+10 points): Synchronization
a) Consider a problem in which we want to synchronize two foreground threads such that

each thread can only proceed beyond a certain point once it is guaranteed that the other
thread has also arrived at its synchronization point. This is called a rendezvous pattern. In
other words, using only semaphores and regular C statements/variables, complete the
following code such that a2() executes after b1(), and b2() executes after a1():

void ThreadA(void) {

 a1();

 //rendezvous here

 bSignal(&a);
 bWait(&b);

 a2();

}

void ThreadB(void) {

 b1();

 //rendezvous here

 bSignal(&b);
 bWait(&a);

 b2();

}

// Global variables and semaphores

sema4_t a = 0;
sema4_t b = 0;

EE445M/EE380L.6, Spring 2015, Midterm 9
Name:

b) The generalization of a rendezvous with N threads is called a barrier. Many operating
systems will provide a native barrier synchronization primitive. Show the C
implementation of a OS_Barrier() function that provides a spinlock realization of barrier
synchronization. Also demonstrate how to use your OS_Barrier() function in the
following code, such that each thread only executes b() once it is guaranteed that all other
threads have finished executing a().You can assume that N is known and given at
compile time. Hint: start from the C implementation of regular spinlock counting
semaphores and show the minimally necessary modifications to turn it into a barrier.

void OS_Barrier(sema4_t* b)
{
 or
 DisableInterrupts(); DisableInterrupts();
 *b -= 1; *b -= 1;
 while(*b > 0) { EnableInterrupts();
 EndableInterrupts(); while(*b > 0) {}
 DisableInterrupts();
 }
 EnableInterrupts();

}

#define N …

// Global variables and semaphores/barriers

sema4_t b = N;

void Thread(void) {

 a();

 // barrier here

 OS_Barrier(&b);

 b();

}

void main(void) {
 int i;
 OS_Init();
 for(i=0; i<N; i++) { OS_AddThread(&Thread); }
 OS_Launch();
}

EE445M/EE380L.6, Spring 2015, Midterm 10
Name:

c) (Required for graduate students, extra credit for undergraduates) A barrier
functionality can also be realized with standard semaphores. Using only sempahores and
regular C statements/variables, complete the following code to realize a barrier among N
threads. Hint: think about how you can realize the equivalent code of your OS_Barrier()
function from b) with just regular variables and semaphores.

#define N …

// Global variables and semaphores

unsigned int count = N;
sema4_t mutex = 1;
sema4_t turnstile = 0;

void Thread(void) {

 a();

 // barrier here

 bWait(&mutex);
 count -= N;
 if(!count) bSignal(&turnstile); // Can be outside mutex
 bSignal(&mutex); // if so, can potentially be
 // replaced by busy-waiting
 bWait(&turnstile); // while(count) {};
 bSignal(&turnstile); // but that will not work
 // with priority-based OS

 // Note that this does not allow the barrier to be reused.
 // The turnstile ends up in a wrong state afterwards.

 // For a reusable solution, and many other tips and tricks
 // around synchronization issues, see
 // Allen B. Downey, The Little Book of Semaphores
 // http://greenteapress.com/semaphores/

 b();

}

void main(void) {
 int i;
 OS_Init();
 for(i=0; i<N; i++) { OS_AddThread(&Thread); }
 OS_Launch();
}

http://greenteapress.com/semaphores/

	Problem 1 (10 points): Reentrance
	Problem 2 (15 points): Stack Size
	Problem 3 (20 points): Weighted Round-Robin Scheduler
	Problem 4 (20 points): Real-Time Performance
	Problem 5 (10 points): Dining Philosophers
	Problem 6 (25+10 points): Synchronization

