
Lab 1 Graphics, LCD, Timer and Interpreter  Page 1.1 
 

J. W. Valvano, A. Gerstlauer   2/7/2016 

Lab 1 Graphics, LCD, ADC, Timer and Interpreter 
 
Goals  • Introduction to Tiva TM4C123 LaunchPad, 
   • Interrupting serial port,  
   • Graphics LCD driver, 
   • Two channel ADC driver, 
   • Periodic interrupts using the timer, 
   • Develop a command line interpreter. 
 
Starter files Located at http://www.ece.utexas.edu/~valvano/arm/ 
  All software is included in ValvanoWareTM4C123.zip 
  • GPIO_4C123.zip 
  • ST7735_4C123.zip 
  • PeriodicSysTickInts_4C123.zip 
  • ADCT0ATrigger_4C123.zip 
  • ADCSWTriggerTwoChan_4C123.zip 
  • UARTInts_4C123.zip (includes FIFO code) 
  • PeriodicTimer0AInts_4C123.zip 
  • Periodic32bitT0Ints_4C123.zip 
 
Data sheets (look for TM4C123 reference material on class website or EE319K site) 
  • http://www.ece.utexas.edu/~gerstl/ee445m_s16/resources.html  
  • http://www.ece.utexas.edu/~valvano/Volume1/  
 
 
Background 
 The overall goal of the class will be to develop a real-time operating system. In this lab, however, you will 
familiarize yourself with the LaunchPad board, µVision development system and the TM4C123 ARM Cortex-M4 
microcontroller. Most of the fundamental concepts in this lab should be review. Therefore, you will use this lab to 
explore the details of the development environment. 
 Look ahead to the next couple of labs. How you design this lab will simplify how you use these programs 
in subsequent labs. Do the lab in order. Do the preparation before coming to the first day of lab, do each step of the 
procedure before checking out. Read the entire lab assignment before starting the procedure, so you can gather the 
right data while you're doing the lab instead of at the end. Write the report the same day you finish checkout. 
Everything will be fresh in your mind and your lab will still be working so you can take meaningful data. 
 An important design step occurs in writing the header file for a driver. It is in the header file that you 
define the interfaces between software components. As part of the preparation in addition to the header files you 
will include rough pseudo code with descriptions of their approach to what you plan to write in the C files. As part 
of the preparation, you should have a plan of how you will complete the lab. The TA checks the preparation at the 
start of lab. This way the TA has an opportunity to set you on the right track by looking at what you have thought of 
so far. 
 
Prepreparation (do this individually) 
0: Go to the ARM site to download the compiler to your laptop https://www.keil.com/demo/eval/armv4.htm. Do not 
get the newest compiler (Version 5.x) because it does not support the TI boards. Any version 4.7 to 4.73 will be OK. 
Install Keil uVision4 using these instructions http://www.ece.utexas.edu/~valvano/Volume1/KeilInstall.htm. Finally, 
download and install the Launchpad drivers from the TI website: http://www.ti.com/tool/stellaris_icdi_drivers. 
 
1: Please review the style guideline presented in style.pdf and c_and_h_files.pdf. 
 
2: Search through the UARTInts_4C123 project to answer these questions about the UART port 
a) This example used UART0. What lines of C code define which port will be used for the UART channel?  
b) What lines of C code define the baud rate, parity, data bits and stop bits for the UART? 
c) Which port pins are used for the UART? Which pin transmits and which pin receives? 

http://www.ece.utexas.edu/%7Evalvano/arm/
http://www.ece.utexas.edu/%7Egerstl/ee445m_s16/resources.html
http://www.ece.utexas.edu/%7Evalvano/Volume1/
https://www.keil.com/demo/eval/armv4.htm
http://www.ece.utexas.edu/%7Evalvano/Volume1/KeilInstall.htm
http://www.ti.com/tool/stellaris_icdi_drivers


Lab 1 Graphics, LCD, Timer and Interpreter  Page 1.2 
 

J. W. Valvano, A. Gerstlauer   2/7/2016 

d) Look in the uart.c driver to find what low-level C code inputs one byte from the UART port. 
e) Similarly, find the low-level C code that outputs one byte to the UART port. 
f) Find in the project the interrupt vector table. In particular, how does the system set the ISR vector? 
g) This code UART0_ICR_R = UART_ICR_TXIC; acknowledges a serial transmit interrupt. Explain how the 

acknowledgement occurs in general for all devices and in specific for this device.  
h) Look in the data sheet of the TM4C123 and determine the extent of hardware buffering of the UART channel. 

For example, the 9S12 transmitter has a transmit data register and a transmit shift register. So, the software can 
output two bytes before having to wait. The serial ports on the PC have 16 bytes of buffering. So, the software 
can output 16 bytes before having to wait. The 9S12 receiver has a receive data register and a receive shift 
register. This means the software must read the received data within 10 bit times after the RDRF flag is set in 
order to prevent overrun. Is the TM4C123 like the 9S12 (allowing just two bytes), or is it like the PC (having a 
larger hardware FIFO buffer)? 

 
3: Search through the ST7735_4C123.zip project to answer these questions about the LCD interface 
a) What synchronization method is used for the low-level command writedata? 
b) Explain the parameters of the function ST7735_DrawChar. I.e., how do you use this function? 
c) Which port pins are used for the LCD? Find the connection diagram needed to interface the LCD.  
d) Specify which other device shares pins with the LCD. 

 
4: Search through the PeriodicSysTickInts_4C123.zip, ST7735_4C123, and GPIO_4C123.zip 
projects to answer these questions about the SysTick interrupts. 
a) What C code defines the period of the SysTick interrupt? 
b) The GPIO_4C123 project runs at 16 MHz, the PeriodicSysTickInts_4C123 project runs at 50 MHz, 

and the ST7735_4C123 project runs at 80 MHz. Find the RCC and RCC2 registers in the data sheet. Look at 
these three projects to explain how the system clock is established. We will be running at 80 MHz for most labs 
in the class. 

c) Look up in the data sheet what condition causes this SysTick interrupt and how this interrupt is acknowledged? 
 
5: Look up the explicit sequence of events that occur as an interrupt is processed. Read section 2.5 in the TM4C123 
data sheet (http://www.ti.com/lit/ds/symlink/tm4c123gh6pm.pdf). Look at the assembly code generated for an 
interrupt service routine.  
a) What is the first assembly instruction in the ISR? What is the last instruction? 
b) How does the system save the prior context as it switches threads when an interrupt is triggered? 
c) How does the system restore context as it switches back after executing the ISR?  

 
Preparation (do this before your lab period) 
1: Design an extended version of the device driver for the LCD so that there are two logically separate displays, one 
display using the top half and one display for the bottom half. There should be at least 4 lines per display. The new 
command will have a prototype of something like 

  void ST7735_Message (int device, int line, char *string, long value);  

where device specifies top or bottom, line specifies the line number (0 to 3), string is a pointer null 
terminated ASCII string, and value is a number to display. You may add other functions as you wish. In this lab, 
you may assume all public functions are called from the interpreter running as the main program; hence they need 
not handle pre-emption and reentrancy. However, in the next lab you will add semaphores so your LCD driver can be 
used by separate threads in a multi-thread environment. In labs 2 and beyond there will be multiple independent main 
programs, each performing output to its own LCD. For the preparation, add prototypes for your public functions to 
the ST7735.h header file. All your public functions must begin with an ST7735_. Your implementations will be 
written and debugged in the file ST7735.c as part of the procedure. 
 
2: Design a device driver for the ADC. Sampling rates should vary from 100 to 10000 Hz, and data will be collected 
on any one of the ADC inputs ADC0 to ADC11. You are expected to use the existing driver functions. You are free 
to use whatever synchronization mode you wish. Feel free to use any existing code, as long as you completely 
understand how it works. In lab 2 you perform real-time sampling by triggering the conversion from a timer and 
interrupting on ADC completion. In this way, there will be no sampling jitter. For the preparation, write an ADC.h 

http://www.ti.com/lit/ds/symlink/tm4c123gh6pm.pdf


Lab 1 Graphics, LCD, Timer and Interpreter  Page 1.3 
 

J. W. Valvano, A. Gerstlauer   2/7/2016 

header file separating the public functions from the private functions. All public functions must begin with an ADC_. 
The implementation file ADC.c for this driver will be written and debugged as part of the actual procedure. One 
possibility for the driver is (the first two are sufficient for Lab 1) 

  int ADC_Open(unsigned int channelNum); 
  unsigned short ADC_In(void); 
  int ADC_Collect(unsigned int channelNum, unsigned int fs, 
                  unsigned short buffer[], unsigned int numberOfSamples); 

E.g., to take one sample from channel 0, we execute  

  ADC_Open(0); 
  Data = ADC_In(); 

E.g., to collect 64 samples from channel 1 at 10 kHz, and store the results in DataBuffer, we execute  

  ADC_Collect(1, 10000, DataBuffer, 64); 
  int ADC_Status(void); 

The function ADC_Collect starts the conversion and the function ADC_Status returns 0 when it is done. Read 
the errata about timer-triggered ADC sampling. YOU MUST USE 16-BIT MODE FOR TIMER-TRIGGERED 
ADC SAMPLING. YOU CANNOT USE TIMER3 to trigger the ADC. 
 
Procedure (do this during your lab period) 
1: Develop a main program that implements an interpreter that accepts commands over the serial port using 
interrupting I/O. Both input and output channels must interrupt. Using the hardware FIFOs is optional, but you will 
need two software FIFOs so that the operating system can block and unblock threads performing serial I/O. The 
serial channel is implemented as part of the USB link. You simply access the UART ports on the TM4C123 and run 
a terminal program like HyperTerminal to interact with your system through the command interpreter. Implement 
commands that assist in debugging the LCD, ADC and timer drivers for this lab. Commands will be added as the 
semester progresses so make this interpreter flexible. Provide for numeric input, numeric output and ease of use. 
There are two potential approaches, and you should choose the one you understand the best, because you will need to 
modify it in subsequent labs. First, you can start with the UARTInts project, which has a receive FIFO and a 
transmit FIFO. The second approach is to use the stdio library and remap the serial stream to the UART. See the 
retarget.c file in the Keil\ARM\Boards\Keil\MCBSTM32\Blinky project included in the Keil installation. In 
particular, you need to create a fputc function like this 

  int fputc(int ch, FILE *f){ 
    UART0_OutChar(ch); 
   return (1);  
  } 
  int fgetc (FILE *f){ 
    return (UART0_InChar());  
  } 
  int ferror(FILE *f){ 
    /* Your implementation of ferror */ 
    return EOF; 
  } 
 
2: Implement and test the LCD driver. 
 
3: Implement and test the ADC driver. You may restrict your testing to one channel for the ADC, but in subsequent 
labs multiple channels will be used at a time. In particular, your robot will employ four distance sensors that utilize 
the ADC. Please limit the analog inputs to the ADC to 0 to 3V. 
 
4: Design, implement and test a system time driver using 32-bit periodic timer interrupts. Feel free to use any of the 
timers except the one you plan to use for hardware-triggered ADC sampling (ADC_Collect). The overall 
operation will be to execute a software task at a periodic rate. You will pass a function pointer into this driver during 
initialization. E.g., 



Lab 1 Graphics, LCD, Timer and Interpreter  Page 1.4 
 

J. W. Valvano, A. Gerstlauer   2/7/2016 

  int OS_AddPeriodicThread(void(*task)(void), 
                           unsigned long period, unsigned long priority); 

where task is a pointer to the function to execute every period milliseconds, and priority is the value to be 
specified in the NVIC for this thread. You are free to specify the units of period however you wish. A 32-bit 
global counter will also be incremented at this rate. In order to simplify transition into Lab2, I suggest you name this 
implementation file OS.c, with a header file OS.h. One public function will reset the 32-bit counter to 0.  

  void OS_ClearPeriodicTime(void); 

A second public function will return the current 32-bit global counter. The units of this system time are the period of 
interrupt passed in by the user when initializing with OS_AddPeriodicThread. 

  unsigned long OS_ReadPeriodicTime(void); 

Looking at disassembled code for the ISR count the number of instructions required to run once instance of the timer 
ISR. For this measurement, assume the user task is a do-nothing function like this 

  void dummy(void) { }; 
 
You will not be able to estimate the execution time from the assembly code because so many operations on the ARM 
architecture occur in parallel. Using debugging instruments and a scope or logic analyzer measure the actual time 
required to run the timer ISR. In the next lab, you will also need a system time function with a resolution on the scale 
of µsec. See the Lab2 starter file OS.h, and look particularly at the functions OS_Time. 
 
Deliverables (exact components of the lab report and lab submission) 
A) Objectives (1/2 page maximum) 
B) Hardware Design (none in this lab) 
C) Software Design (software documentation in the report and checkin of all files into the submission repository) 
 1) Low level LCD driver (ST7735_.c and ST7735_.h files) 
 2) Low level ADC driver (ADC.c and ADC.h files) 
 3) Low level timer driver (OS.c and OS.h files) 
 4) High level main program (the interpreter) 
D) Measurement Data 
 1) Estimated time to run the periodic timer interrupt 
 2) Measured time to run the periodic timer interrupt 
E) Analysis and Discussion (1 page maximum) This section will consist of explicit answers to these questions 

1) What are the range, resolution, and precision of the ADC?   
2) List the ways the ADC conversion can be started. Explain why you choose the way you did. 
3) The measured time to run the periodic interrupt can be measured directly by setting a bit high at the start 

of the ISR and clearing that bit at the end of the ISR. It could also be measured indirectly by measuring 
the time lost when running a simple main program that toggles an output pin. How did you measure it? 
Compare and contrast your method to these two. 

4) Divide the time to execute once instance of the ISR by the total instructions in the ISR it to get the 
average time to execute an instruction. Compare this to the 12.5 ns system clock period (80 MHz). 

5) What are the range, resolution, and precision of the SysTick timer?  I.e., answer this question relative to 
the NVIC_ST_CURRENT_R register in the Cortex M4 core peripherals. 

 
Checkout (show this to the TA)  
 You should be able to demonstrate to the TA the technique you used to measure the overhead of running the 
timer2 ISR. The successful completion of Lab 2 will depend on your knowledge of how interrupts are processed and 
how the serial port driver uses its two FIFO queues. Be prepared for questions addressing interrupts and the FIFO 
queue. Demonstrate each of the interpreter commands. 
 
Hints  
1) It is appropriate to copy-paste software from the example files. You must, however, clearly document which code 
is copied, which code is modified, and which code is original. 
 



Lab 1 Graphics, LCD, Timer and Interpreter  Page 1.5 
 

J. W. Valvano, A. Gerstlauer   2/7/2016 

2) Even though you are allowed to copy-paste software, there should be no magic in this class. In other words, you 
are responsible for understanding all the details of how your system runs. 
 
3) Read ahead into Labs 2 and 3 to see how these drivers will be used. In particular, look at the user program that 
your Lab 2 RTOS will be running. 
 
4) I suggest you modify the starter project UARTInts or ST7735 into your Lab 1 solution.  
 
5) You can find this FIFO in the fifo.h file of the UARTInts project 
 
#define AddFifo(NAME,SIZE,TYPE, SUCCESS,FAIL) \ 
unsigned long volatile PutI ## NAME;  \ 
unsigned long volatile GetI ## NAME;  \ 
TYPE static Fifo ## NAME [SIZE];      \ 
void NAME ## Fifo_Init(void){         \ 
  PutI ## NAME= GetI ## NAME = 0;     \ 
}                                     \ 
int NAME ## Fifo_Put (TYPE data){     \ 
  if(( PutI ## NAME - GetI ## NAME ) & ~(SIZE-1)){  \ 
    return(FAIL);      \ 
  }                    \ 
  Fifo ## NAME[ PutI ## NAME &(SIZE-1)] = data; \ 
  PutI ## NAME ## ++;  \ 
  return(SUCCESS);     \ 
}                      \ 
int NAME ## Fifo_Get (TYPE *datapt){  \ 
  if( PutI ## NAME == GetI ## NAME ){ \ 
    return(FAIL);      \ 
  }                    \ 
  *datapt = Fifo ## NAME[ GetI ## NAME &(SIZE-1)];  \ 
  GetI ## NAME ## ++;  \ 
  return(SUCCESS);     \ 
} 
 
6) The TM4F123 has 8 UARTs. UART0 (PA1, PA0) is connected to the PC through the USB cable 


	Lab 1 Graphics, LCD, ADC, Timer and Interpreter

