
The University of Texas at Austin
Department of Electrical and Computer Engineering

Real-Time Systems / Real-Time Operating Systems
EE445M/EE380L.6, Spring 2016

Final Exam Solutions
Date: May 12, 2016

UT EID:

Printed Name:

Last, First

Your signature is your promise that you have not cheated and will not cheat on this exam, nor
will you help others to cheat on this exam:

Signature:

Instructions:

• Open book and open notes.
• No calculators or any electronic devices (turn cell phones off).
• Please be sure that your answers to all questions (and all supporting work that is required)

are contained in the space (boxes) provided.
• Anything outside the boxes will be ignored in grading.
• For all questions, unless otherwise stated, find the most efficient (time, resources)

solution.

Problem 1 10

Problem 2 10

Problem 3 15

Problem 4 10

Problem 5 20

Problem 6 25

Problem 7 10

Total 100

EE445M/EE380L.6, Spring 2016 Final Solutions 2
Name:

Problem 1 (10 points): Synchronization
Given the macro-based basic FIFO implementation below, insert mutexes to make the FIFO fully
thread-safe, i.e. resolve all critical sections against multiple concurrent foreground threads
calling Get() and Put() concurrently. Also insert counting semaphores for roomLeft and
dataAvailable to wait and block calling threads until there is room in the FIFO on Put() and
data available on Get():

#define AddFifo(NAME,SIZE,TYPE) \

unsigned long volatile PutI ## NAME; \
unsigned long volatile GetI ## NAME; \

 sema_t mutex, roomLeft, dataAvailable; \

TYPE static Fifo ## NAME [SIZE]; \

void NAME ## Fifo_Init(void){ \

 PutI ## NAME= GetI ## NAME = 0; \

 OS_InitSemaphore(&mutex, 1); \
 OS_InitSemaphore(&roomLeft, SIZE); \
 OS_InitSemaphore(&dataAvailable, 0); \

} \

void NAME ## Fifo_Put (TYPE data){ \

 OS_Wait(&roomLeft); \
 OS_bWait(&mutex); \

 Fifo ## NAME[PutI ## NAME &(SIZE-1)] = data; \

 PutI ## NAME ## ++; \

 OS_bSignal(&mutex); \
 OS_Signal(&dataAvailable); \

} \

void NAME ## Fifo_Get (TYPE *datapt){ \

 OS_Wait(&dataAvailable); \
 OS_bWait(&mutex); \

 *datapt = Fifo ## NAME[GetI ## NAME &(SIZE-1)]; \

 GetI ## NAME ## ++; \

 OS_bSignal(&mutex); \
 OS_Signal(&roomLeft); \
}

EE445M/EE380L.6, Spring 2016 Final Solutions 3
Name:

Problem 2 (10 points): Scheduling
Given the following KPN-like application code running on top of your OS and using blocking
FIFOs as described and implemented in Problem 1. All FIFOs have a size of 5 integers. Assume
that threadA is the first thread to be launched by the OS:

a) What will be the output printed by the program if it is running under a non-preemptive, i.e.
cooperative round-robin scheduler? Will any of the FIFOs ever be full?

Output (round-robin order A->B->C->A->…): ABC00ABC11ABC22…
Ppossibly also (round-robin order A->C->B->A->…): ABAC00BAC11BAC22…

FIFOs will never fill up.

b) What will be the output of the program under a strict priority scheduler with threads A, B and
C having high, medium and low priority, respectively? Will any of the FIFOs ever be full?

Output: AAAAAABBBBBBBABC00ABC11ABC22…
Or (if OS_Signal() doesn’t immediately context switch): AAAAAABBBBBBC00C11C22C33C44ABC55…

FIFOs do fill up. In the first (strict priority) case, they fill up in beginning and remain full.
In the second case, they fill up in the beginning, then get emptied, then fill up again, and so on.

void threadA(void) {
 int n = 0;
 while(1) {
 printf(“A”);
 AFIFO_Put(n++);
 OS_Suspend();
 }
}

void threadB(void) {
 int n = 0;
 while(1) {
 printf(“B”);
 BFIFO_Put(n++);
 OS_Suspend();
 }
}

void threadC(void) {
 int a,b;
 while(1) {
 AFIFO_Get(&a);
 BFIFO_Get(&b);
 printf(“C%d%d”,
 a,b);
 }
}

EE445M/EE380L.6, Spring 2016 Final Solutions 4
Name:

Problem 3 (15 points): Memory Management
Consider a 4kB heap and the following sequence of heap allocations and de-allocations
triggered, for example, by different programs being loaded/launched and exiting:

Program 1 launches: p1 = Heap_Malloc(512);
Program 2 launches: p2 = Heap_Malloc(1024);
Program 3 launches: p3 = Heap_Malloc(1024);
Program 2 exits: Heap_Free(p2);
Program 4 launches: p4 = Heap_Malloc(768);
Program 1 exits: Heap_Free(p1);

For each of the different heap allocation strategies below, show the state of the heap at the end of
this sequence. Mark the memory regions allocated to each program that is loaded into memory at
this point. Is the heap fragmented? What is the amount of free space and what is the largest
block/program size that can be allocated/loaded then? Assume that the heap manager does not
require any overhead for extra meta-data, and that the heap is allocated from bottom to top, i.e. a
block always ends up being placed at the bottom of its chosen free space region.

a) First fit b) Best fit c) Worst fit

Heap

p3

p4

Heap

p3

p4

Heap

p4

p3

0x1000

0x0C00

0x0800

0x0400

0x0000

0x1000

0x0C00

0x0800

0x0400

0x0000

0x1000

0x0C00

0x0800

0x0400

0x0000

Fragmented: Yes
Free space: 9 * 256 = 2304 bytes
Max. alloc: 6 * 256 = 1.5kB

Behaves the same as First Fit:
Fragmented: Yes
Free space: 9 * 256 = 2304 bytes
Max. alloc: 6 * 256 = 1.5kB

Fragmented: Yes
Free space: 9 * 256 = 2304 bytes
Max. alloc: 6 * 256 = 1.5kB

EE445M/EE380L.6, Spring 2016 Final Solutions 5
Name:

Problem 4 (10 points): Supervisor Call
a) Given below is the code template for an SVC_Handler given in class. Complete the code

fragment to realize a supervisor call to OS_AddThread whenever a SVC #42 instruction is
executed.

SVC_Handler

 LDR R12,[SP,#24] ; Get return address from stack

 LDRH R12,[R12,#-2] ; Load SVC instruction (2 bytes)

 BIC R12,#0xFF00 ; Extract ID in R12

 LDM SP,{R0-R3} ; Get any parameters

 CMP R12,#42 ; check for correct ID
 BNE EndSVC ; do nothing if not
 PUSH {LR} ; save link register
 BL OS_AddThread ; call actual OS routine
 POP {LR} ; restore link register

EndSVC

 STR R0,[SP] ; Store return value

 BX LR ; Return from exception

b) In earlier lectures we had discussed that invocation of OS kernel routines via supervisor calls
(SVCs) will also be necessary when running an OS that uses the Process Stack Pointer (PSP)
for all user code. Would your handler above also work in such a setup? If not, show the
necessary modifications in the code above for the handler to work in a PSP setup.

Modifications are needed. Return address, return value, function parameters are all on the PSP.

Replace start of handler with:
 MRS R12,PSP ; Get PSP
 LDM R12,{R0-R3} ; Get parameters from process stack
 LDR R12,[R12,#24] ; Get return address from process stack
 LDRH R12,[R12,#-2] ; Load SVC instruction
 BIC R12,#0xFF00 ; Extract ID

And end of handler with:
 MRS R12,PSP ; Get PSP
 STR R0,[R12] ; Store return value on process stack
 BX LR

EE445M/EE380L.6, Spring 2016 Final Solutions 6
Name:

Problem 5 (20 points): Networking
a) Assume a CAN 2.0A bus running at a baud rate of 1Mbit/s (=1,000,000 bit/s) and using 11-

bit IDs, what is the maximum bandwidth achievable for CAN data transfers? You don’t have
to compute the actual result, just showing the expression is ok.

 Data bits 64 bits 64
Bandiwidth = -------------------------- = ----------------------- * 1,000,000 bit/s = ------ Mbit/s
 Frame delay 11+36+64 bits 111

b) What is the bandwidth when (continuously) transmitting 32-bit data values of 0x00FF00FF?
Hint: Don’t forget about bit stuffing. Again, just the expression not final number is ok.

Bit stuffing inserts one extra bit every five consecutive equal bits, so 4 additional stuff bits here for the data. Bit
stuffing also happens for other parts of the frame depending on the bit patterns, e.g. for the ID, but assumed to
be no stuffing needed elsewhere here:
 32 32
Bandwidth = ------------------ Mbit/s = --------- Mbit/s-
 11+36+4+32 83

c) Assuming a CAN network with 3 nodes. At time 0, node 0 wants to send a message with ID
42 to node 1, node 1 wants to send a message with ID 14 to node 2 and node 2 wants to
broadcast a message with ID 4 to nodes 0 and 1. At what time does each of the three
messages reach their destination(s)? Just show the result as a function of the frame delay tf (=
time to complete a single message transfer).

Highest priority message 4, broadcast 2 -> 0,1 finishes at time tf
Medium priority message 14, 1->2 finishes at 2*tf
Lowest priority message 42, 0->1 finishes at 3*tf

d) Now consider an SPI bus running at a clock rate of 8MHz (=8,000,000 bit/s). What is the
maximum achievable bandwidth for (continuously) reading single data blocks of 512 bytes
assuming zero command-response delay (NCR=0) and an immediate data start (i.e. zero data
packet delay)? How does that compare to the SD card bandwidth you measured in Lab 4?

 512 byte data * 8 Mbit/s 256
Bandwidth = -- = ----------- MB/s ≈ 1 MB/s
 6byte(command)+1byte(response)+515byte(packet) 261

Should be about 4x-8x higher than what was seen in Lab 4 (depending on the SD card).

EE445M/EE380L.6, Spring 2016 Final Solutions 7
Name:

 FAT Disk
 0 0
1 1
2 0x0004 2 A0*

 3 0x0000 3
4 0x000C 4 A1
5 0x0000 5
6 0xFFFF 6 B3
7 0x0000 7
8 0x0000 8
9 0x000A 9 B1

10 0x0006 10 B2
11 0x0000 11
12 0x000D 12 A2
13 0x000E 13 A3
14 0xFFFF 14 A4
15 0x0009 15 B0*

Problem 6 (25 points): Filesystem
The FAT16 filesystem standard uses a file allocation
table (FAT) scheme with 16-bit FAT entries. The first
two blocks on disk and corresponding FAT entries are
reserved to store the boot sector, the root directory
and one or more redundant copies of the FAT itself.
FAT entries of zero indicate an empty block, while
any value larger than 0xFFF8 is used as end-of-file
marker. Each directory entry uses 32 bytes. Given the
following datastructures for a FAT16-compliant
filesystem (directory and FAT):
// directory w/ 32 byte entries
struct dir_entry {
 char name[8]; // file name
 char ext[3]; // extension
 uint8 attr[11]; // attributes
 uint16 date; // modified..
 uint16 time; // ..date/time
 uint16 start; // start block
 uint32 size; // size in byte
} dir[DIR_SIZE];

uint16 fat[FAT_SIZE]; // FAT

a) For the specific instance of a FAT with 16 entries as shown in the figure above, how many
files are there on disk and what is the size of each of these files assuming 512 byte disk
blocks. Mark the blocks belonging to each file and each file’s starting block in the disk
layout on the right. How much free space is there left on the disk?

2 files, file A and B as marked above. Starting blocks A0 and B0 as indicated with *.

Free space: 5 blocks * 512 bytes/block= 2.5kB

b) What is the maximum file size supported by FAT16, and what part of the FAT16
datastructure determines the maximum file size?

Maximum file size determined by ‘size’ directory entry: 232 byte = 4 GiB
Upper bound on file size also determined by maximum disk size, see below.

EE445M/EE380L.6, Spring 2016 Final Solutions 8
Name:

c) Assuming 512 byte disk blocks, what is the largest disk size supported by FAT16, and how
many entries does the FAT maximally have? What determines the maximum disk size? How
large does the FAT need to be for a disk with 128kB?

Largest disk size
& why?

16-bit FAT entries, so maximally 216 blocks = 65536 blocks * 512 byte = 32MiB
In reality, FAT entries must be <= 0xFFF7, so disk size limit is 8 blocks (4kB) less.

Max.
FAT_SIZE One entry per disk block: 216 = 65,536 (-8)

FAT_SIZE for
128kB disk

128 * 1024 / 512 = 256 entries

d) To support larger disk sizes, the FAT16 standard in
reality uses clustering, where the disk is partitioned
into fixed-sized clusters and each FAT entry refers
to a cluster of contiguous blocks/sectors on disk.
What is the cluster size needed for a disk with 227
bytes? What is the disadvantage of clustering?

e) Assuming a FAT16-formatted disk with 4kB cluster size and sectors of 512 bytes, show the
code of a filesystem routine that reads the n-th byte from the file handle pointing to its
directory entry. You can assume that the dir and fat datastructures have already been read
and populated from disk, where start directory fields points to a file’s first cluster.

// Return 0 if successful, 1 on failure
int FAT16_ReadByte(struct dir *handle, long n, char* pt)
{
 char buf[512];

 uint16 cluster;
 uint32 block;

 if(n >= handle->size) return 1; // beyond end of file?

 cluster = handle->start; // get index of first cluster of file
 while(n >= 4096) { // go to cluster that contains byte n
 n -= 4096;
 cluster = fat[cluster]; // walk along linked list
 }

 block = cluster * 8; // starting block of cluster on disk
 block += n / 512; // block within cluster that contains byte n

 if(eDisk_ReadBlock(buf, block) return 1;

 *pt = buf[n % 512]; // get correct byte out of block

 return 0;
}

227 / 216 = 211 bytes/cluster = 2kB clusters

Increases internal fragmentation.

EE445M/EE380L.6, Spring 2016 Final Solutions 9
Name:

Problem 7 (10 points): Motor Driver
Shown below is the schematic of the H-bridge on our motor board. Assume that the motor runs
in “forward” direction if current is flowing from A+ to A-:

For each of the following waveforms (with 4ms period), describe precisely what will happen if
they are applied to the PB6 and PB7 inputs? Is the motor running? If so, in what direction and at
what speed? Etc.

a)

Time0 1ms 2ms 3ms 4ms

PB7

PB6

Motor is running in “backward” direction at 25% speed.

EE445M/EE380L.6, Spring 2016 Final Solutions 10
Name:

b)

Time0 1ms 2ms 3ms 4ms

PB7

PB6

Motor is running in “backward” direction at 75% speed.

c)

Time0 1ms 2ms 3ms 4ms

PB7

PB6

Motor is not running.

d)

Time0 1ms 2ms 3ms 4ms

PB7

PB6

Power is oscillating between 25% backward and 75% forward, either no movement at all (due to inertia of
motor) or slight, jerky forward movement.

	Problem 1 (10 points): Synchronization
	Problem 2 (10 points): Scheduling
	Problem 3 (15 points): Memory Management
	Heap
	Heap
	Heap
	0x1000
	0x1000
	0x1000
	0x0C00
	0x0C00
	0x0C00
	p4
	p3
	p3
	p3
	0x0800
	0x0800
	0x0800
	0x0400
	0x0400
	0x0400
	p4
	p4
	0x0000
	0x0000
	0x0000
	Problem 4 (10 points): Supervisor Call
	Problem 5 (20 points): Networking
	Problem 6 (25 points): Filesystem
	Problem 7 (10 points): Motor Driver

