
The University of Texas at Austin
Department of Electrical and Computer Engineering

Real-Time Systems / Real-Time Operating Systems
EE445M/EE380L.6, Spring 2016

Midterm
Date: March 24, 2016

UT EID:

Printed Name:

Last, First

Your signature is your promise that you have not cheated and will not cheat on this exam, nor will
you help others to cheat on this exam:

Signature:

Instructions:

• Open book and open notes.
• No calculators or any electronic devices (turn cell phones off).
• Please be sure that your answers to all questions (and all supporting work that is required)

are contained in the space (boxes) provided.
• Anything outside the boxes will be ignored in grading.
• For all questions, unless otherwise stated, find the most efficient (time, resources) solution.

Problem 1 20

Problem 2 20

Problem 3 25

Problem 4 20

Problem 5 15

Total 100

EE445M/EE380L.6, Spring 2016 Midterm 2
Name:

Problem 1 (20 points): Critical Sections and Deadlock
a) Given the following two routines that can be called from any user thread. Does this code have

any critical sections or reentrancy issues? Justify, and list all such cases in the code.

b) Now consider the following code. Does this code have any critical sections, reentrancy or

deadlock issues? Justify your answer, and list all such cases in the code.

void Dbg_Out(int v) {
 int save;
 save = GPIO_PORTF_DATA_R;
 GPIO_PORTF_DATA_R = v;
 Dbg_Record(v);
 GPIO_PORTF_DATA_R = save;
}

int Dbg_Dump[MAX_DUMP];
unsigned Dbg_Count = 0;

void Dbg_Record(int v) {
 if(Dbg_Cnt==MAX_DUMP) return;
 Dbg_Dump[Dbg_Cnt] = v;
 Dbg_Cnt = Dbg_Cnt + 1;
}

void Dbg_Out(int v) {
 int save;
 DisableInterrupts();
 save = GPIO_PORTF_DATA_R;
 GPIO_PORTF_DATA_R = v;
 Dbg_Record(v);
 GPIO_PORTF_DATA_R = save;
 EnableInterrupts();
}

int Dbg_Dump[MAX_DUMP];
unsigned Dbg_Count = 0;

void Dbg_Record(int v) {
 if(Dbg_Cnt==MAX_DUMP) return;
 DisableInterrupts();
 Dbg_Dump[Dbg_Cnt] = v;
 Dbg_Cnt = Dbg_Cnt + 1;
 EnableInterrupts();
}

EE445M/EE380L.6, Spring 2016 Midterm 3
Name:

c) Now consider the following code. Does this code have any critical sections, reentrancy or
deadlock issues? Justify your answer, and list all such cases in the code.

d) Provide another solution that avoids all critical sections and deadlocks. Prove that your solution

is deadlock-free. List all deadlock conditions and show that at least one of them is violated.

void Dbg_Out(int v) {
 int save;
 DisableInterrupts();
 save = GPIO_PORTF_DATA_R;
 GPIO_PORTF_DATA_R = v;
 Dbg_Record(v);
 GPIO_PORTF_DATA_R = save;
 EnableInterrupts();
}

int Dbg_Dump[MAX_DUMP];
unsigned Dbg_Count = 0;
sema_t Dbg_Mutex = 1;

void Dbg_Record(int v) {
 if(Dbg_Cnt==MAX_DUMP) return;
 OS_bWait(&Dbg_Mutex);
 Dbg_Dump[Dbg_Cnt] = v;
 Dbg_Cnt = Dbg_Cnt + 1;
 OS_bSignal(&Dbg_Mutex);
}

EE445M/EE380L.6, Spring 2016 Midterm 4
Name:

Problem 2 (20 points): Priority Scheduling
Consider a real-time system running three periodic tasks with the following periods (= deadlines)
and execution times. You can assume zero context switch and interrupt overhead.

Task Execution Time Period
Airbag (A) 10ms 30ms

Warning (W) 20ms 40ms
Engine (E) 10ms 60ms

a) Assign priorities to tasks to implement a rate monotonic scheduling (RMS) strategy.

b) What is the processor utilization when executing this task set.

c) Draw the schedule of task executions over time. Assume that all tasks become ready to execute,
i.e. start their first period at time zero. Draw one iteration of the schedule until it starts
repeating. Is the task set schedulable, i.e. do all task finish their execution before the start of
their next period (=deadline)?

 A

 W

 E

Time

EE445M/EE380L.6, Spring 2016 Midterm 5
Name:

Problem 3 (25 points): OS Sleep Support
a) Given the basic round-robin OS kernel code below, show the necessary modifications

(insertions and/or deletions) to add OS_Sleep() functionality. Keep your implementation
simple, i.e. you are not required to optimize for performance.

struct tcb {
 long *sp;
 struct tcb *next;

}

struct tcb* RunPt;

#define ContextSwitch() (NVIC_INT_CTRL_R=0x10000000) // trigger PendSV

void DisableInterrupts(void);
void EnableInterrupts(void);
long StartCritical(void);
void EndCritical(long sr);

void OS_Sleep(unsigned long delay) {

}

void SysTick_Handler(void) {

 ContextSwitch();

}

EE445M/EE380L.6, Spring 2016 Midterm 6
Name:

PendSV_Handler

 CPSID I

 PUSH {R4-R11}

 LDR R0, =RunPt

 LDR R1, [R0]

 STR SP, [R1]

 LDR R1, [R1,#4]

 STR R1, [R0]

 LDR SP, [R1]

 POP {R4-R11}

 CPSIE I

 BX LR

b) How does your OS implementation behave when all threads are sleeping, i.e. what happens
when all but one thread currently sleep and the last active/running thread calls OS_Sleep()?

EE445M/EE380L.6, Spring 2016 Midterm 7
Name:

Problem 4 (20 points): Thread Exit and Kill
Assume a basic round-robin OS kernel (as shown in Problem 3) with the following
OS_AddThread() implementation:

Given the following user code:

long* SetInitialStack(long *sp, void (*entry)(void)) {
 (sp) = (long)0x01000000L; / xPSR */
 (--sp) = (long)entry; / PC */
 (--sp) = (long)0x14141414L; / R14 */
 (--sp) = (long)0x12121212L; / R12 */
 (--sp) = (long)0x03030303L; / R3 */
 (--sp) = (long)0x02020202L; / R2 */
 (--sp) = (long)0x01010101L; / R1 */
 (--sp) = (long)0x000000000; / R0 */
 (--sp) = (long)0x11111111L; / R11 */
 (--sp) = (long)0x10101010L; / R10 */
 (--sp) = (long)0x09090909L; / R9 */
 (--sp) = (long)0x08080808L; / R8 */
 (--sp) = (long)0x07070707L; / R7 */
 (--sp) = (long)0x06060606L; / R6 */
 (--sp) = (long)0x05050505L; / R5 */
 (--sp) = (long)0x04040404L; / R4 */
 return sp;
}

int OS_AddThread(void(*task)(void)) { long sr;
 struct tcb* newPt;

 sr = StartCritical();

 newPt = AllocTcb(); // get TCB & stack, set SP to top of stack
 if(!newPt) { EndCritical(sr); return 0; }

 newPt->sp = SetInitialStack(newPt->sp, task);

 newPt->next = RunPt->next;
 RunPt->next = newPt;

 EndCritical(sr);
 return 1;
}

void main(void) {
 int i;
 OS_Init();
 OS_AddThread(Thread1);
 ...
 OS_Launch();
}

Thread1

 ...

 BX LR <--- PC

EE445M/EE380L.6, Spring 2016 Midterm 8
Name:

a) What happens when Thread1 exits normally (without calling OS_Kill())? In other words, if the
current PC points to the last BX LR return instruction in Thread1, where will the branch go to
and what line of code will be executed next? Hint: think about the value that will be in the LR
register during execution of Thread1 and thus when BX LR is executed.

b) Modify the OS kernel code shown above such that OS_Kill() will be automatically executed

whenever a thread added to the OS exits normally. You are only allowed to make modifications
to the kernel but not the user code, i.e. the OS_xxx interface must remain as is and must work
for an arbitrary number of threads. If you need additional code, show it in the box below.

EE445M/EE380L.6, Spring 2016 Midterm 9
Name:

Problem 5 (15 points): Synchronization and Deadlock
a) Given the two threads below, can any deadlock occur? If yes, why (show an execution

sequence leading to deadlock)? If not, why not (prove that there is no deadlock)?

b) Given the two threads below, can any deadlock occur? If yes, why (show an execution
sequence leading to deadlock)? If not, why not (prove that there is no deadlock)?

void Thread1(void) {
 OS_bWait(&file_mutex);
 ...
 OS_bWait(&memory_mutex);
 ...
 OS_bSignal(&memory_mutex);
 ...
 OS_bSignal(&file_mutex);
}

void Thread2(void) {
 OS_bWait(&memory_mutex);
 ...
 If(debug) {
 OS_bWait(&file_mutex);
 ...
 OS_bSignal(&file_mutex);
 }
 ...
 OS_bSignal(&memory_mutex);
}

void Thread1(void) {
 OS_bWait(&file_mutex);
 ...
 OS_Wait(&available);
 ...
 OS_bSignal(&file_mutex);
}

void Thread2(void) {
 OS_bWait(&file_mutex);
 ...
 If(new_data) {
 OS_Signal(&available);
 }
 ...
 OS_bSignal(&file_mutex);
}

EE445M/EE380L.6, Spring 2016 Midterm 10
Name:

c) Assume that the code is running on top of an OS that uses priority scheduling and a priority
ceiling protocol for all semaphores. For each of the examples above, can any deadlock still
occur? If yes, why (show an execution sequence leading to deadlock)? If not, why not (prove
that there is no deadlock)?

Example a)

Example b)

	Problem 1 (20 points): Critical Sections and Deadlock
	Problem 2 (20 points): Priority Scheduling
	Problem 3 (25 points): OS Sleep Support
	Problem 4 (20 points): Thread Exit and Kill
	Problem 5 (15 points): Synchronization and Deadlock

