
The University of Texas at Austin
Department of Electrical and Computer Engineering

Real-Time Systems / Real-Time Operating Systems
EE445M/EE380L.6, Spring 2016

Midterm Solutions
Date: March 24, 2016

UT EID:

Printed Name:

Last, First

Your signature is your promise that you have not cheated and will not cheat on this exam, nor
will you help others to cheat on this exam:

Signature:

Instructions:

• Open book and open notes.
• No calculators or any electronic devices (turn cell phones off).
• Please be sure that your answers to all questions (and all supporting work that is required)

are contained in the space (boxes) provided.
• Anything outside the boxes will be ignored in grading.
• For all questions, unless otherwise stated, find the most efficient (time, resources)

solution.

Problem 1 20

Problem 2 20

Problem 3 25

Problem 4 20

Problem 5 15

Total 100

EE445M/EE380L.6, Spring 2016 Midterm 2
Name:

Problem 1 (20 points): Critical Sections and Deadlock
a) Given the following two routines that can be called from any user thread. Does this code

have any critical sections or reentrancy issues? Justify, and list and all such cases in the code.

b) Now consider the following code. Does this code have any critical sections, reentrancy or
deadlock issues? Justify your answer, and list all such cases in the code.

void Dbg_Out(int v) {
 int save;
 save = GPIO_PORTF_DATA_R;
 GPIO_PORTF_DATA_R = v;
 Dbg_Record(v);
 GPIO_PORTF_DATA_R = save;
}

int Dbg_Dump[MAX_DUMP];
unsigned Dbg_Count = 0;

void Dbg_Record(int v) {
 if(Dbg_Cnt==MAX_DUMP) return;
 Dbg_Dump[Dbg_Cnt] = v;
 Dbg_Cnt = Dbg_Cnt + 1;
}

Yes, two issues:

(1) The Dbg_Record() function is not reentrant, it performs a potentially concurrent write access to
Dbg_Dump and a read-modify-write access to the global Dbg_Cnt variable.

(2) The Dbg_Out() function is also not reentrant. For one, it calls the non-reentrant Dbg_Record()
routine. In addition, it also has a critical section itself when performing a read-modify-write
sequence on the globally shared Port F resource.

void Dbg_Out(int v) {
 int save;
 DisableInterrupts();
 save = GPIO_PORTF_DATA_R;
 GPIO_PORTF_DATA_R = v;
 Dbg_Record(v);
 GPIO_PORTF_DATA_R = save;
 EnableInterrupts();
}

int Dbg_Dump[MAX_DUMP];
unsigned Dbg_Count = 0;

void Dbg_Record(int v) {
 if(Dbg_Cnt==MAX_DUMP) return;
 DisableInterrupts();
 Dbg_Dump[Dbg_Cnt] = v;
 Dbg_Cnt = Dbg_Cnt + 1;
 EnableInterrupts();
}

The core of Dbg_Record() is now mutually exclusive and thus reentrant, but the overall routine still has a
race condition in the MAX_DUMP check: more than one thread may pass the check and thus overflow
the dump buffer if they are preempted between the check and disabling interrupts.

Dbg_Out() still has a critical section making it non-reentrant: Since the Dbg_Record() call will
unconditionally enable interrupts at the end of its execution, an interrupt and context switch to another
thread can occur after the call. As such, it is not guaranteed that the GPIO_PORTF_DATA_R = save
statement will finish before another thread enters Dbg_Out().

EE445M/EE380L.6, Spring 2016 Midterm 3
Name:

c) Now consider the following code. Does this code have any critical sections, reentrancy or
deadlock issues? Justify your answer, and list all such cases in the code.

d) Provide another solution that avoids all critical sections and deadlocks. Prove that your
solution is deadlock-free. List all deadlock conditions and show that at least one of them is
violated.

void Dbg_Out(int v) {
 int save;
 DisableInterrupts();
 save = GPIO_PORTF_DATA_R;
 GPIO_PORTF_DATA_R = v;
 Dbg_Record(v);
 GPIO_PORTF_DATA_R = save;
 EnableInterrupts();
}

int Dbg_Dump[MAX_DUMP];
unsigned Dbg_Count = 0;
sema_t Dbg_Mutex = 1;

void Dbg_Record(int v) {
 if(Dbg_Cnt==MAX_DUMP) return;
 OS_bWait(&Dbg_Mutex);
 Dbg_Dump[Dbg_Cnt] = v;
 Dbg_Cnt = Dbg_Cnt + 1;
 OS_bSignal(&Dbg_Mutex);
}

It depends on how OS_bWait/bSignal() are implemented:

If those internally use Enable/DisableInterrupts(), the same critical section as in 1b) still exists.

Otherwise, i.e. if they use LDREX/STREX, except for the MAX_DUMP race condition, both routines are
mutually exclusive and thus reentrant. However, the code then has potential for deadlocks: Dbg_Record()
can be interrupted and preempted while holding the Dbg_Mutex semaphore. If another thread then calls
Dbg_Out(), it will block on Dbg_Mutex when calling Dbg_Record() while interrupts (and hence all
context switches) are disabled.

Two possible solutions:

(1) Replace all Enable/DisableInterrupts() in solution b) with calls to Start/EndCritical() instead
(such that Dbg_Record() properly saves and restores interrupt conditions on entry/exit).

(2) Replace Enable/DisableInterrupts() in solution c) with OS_bWait/bSignal() on another mutex
specific to Port F.

Deadlock conditions:

(i) Mutual exclusion
(ii) Hold and wait
(iii) Circular wait
(iv) No preemption of wait

Solution (1) violates (ii) and (iii). There is no waiting/blocking of threads. Once a thread has disabled
interrupts, it has acquired exclusive access to the whole machine.

Solution (2) violates (iii). Assuming mutexes are not accessed otherwise, threads either only ever access
one mutex (in Dbg_Record), or the two mutexes are always acquired in the same order (in Dbg_Out).

EE445M/EE380L.6, Spring 2016 Midterm 4
Name:

Problem 2 (20 points): Priority Scheduling
Consider a real-time system running three periodic tasks with the following periods (= deadlines)
and execution times. You can assume zero context switch and interrupt overhead.

Task Execution Time Period
Airbag (A) 10ms 30ms

Warning (W) 20ms 40ms
Engine (E) 10ms 60ms

a) Assign priorities to tasks to implement a rate monotonic scheduling (RMS) strategy.

Assign priorities inversely proportional to task periods:
 Highest priority: A
 Medium priority: W
 Lowest priority: E

b) What is the processor utilization when executing this task set.

Utilization = 10/30 + 20/40 + 10/60 = 1/3 + 1/2 + 1/6 = 100%

c) Draw the schedule of task executions over time. Assume that all tasks become ready to
execute, i.e. start their first period at time zero. Draw one iteration of the schedule until it
starts repeating. Is the task set schedulable, i.e. do all task finish their execution before the
start of their next period (=deadline)?

 A

 W

 E

Time 30μs 60μs 90μs 120μs

Task E misses its first deadline at 60µs

EE445M/EE380L.6, Spring 2016 Midterm 5
Name:

Problem 3 (25 points): OS Sleep Support
a) Given the basic round-robin OS kernel code below, show the necessary modifications

(insertions and/or deletions) to add OS_Sleep() functionality. Keep your implementation
simple, i.e. you are not required to optimize for performance.

struct tcb {
 long *sp;
 struct tcb *next;

 unsigned long sleep;

}

struct tcb* RunPt;

#define ContextSwitch() (NVIC_INT_CTRL_R=0x10000000) // trigger PendSV

void DisableInterrupts(void);
void EnableInterrupts(void);
long StartCritical(void);
void EndCritical(long sr);

void OS_Sleep(unsigned long delay) {

 RunPt->sleep = (delay / SYSTICK_PERIOD); // set thread to sleep

 ContextSwitch(); // OS_Suspend();

}

void SysTick_Handler(void) {

 struct tcb* pt;

 pt = RunPt; // decrement all sleeping threads
 do {
 if(pt->sleep) pt->sleep = pt->sleep – 1;
 pt = pt->next;
 } while(pt != RunPt);

 ContextSwitch();

}

EE445M/EE380L.6, Spring 2016 Midterm 6
Name:

PendSV_Handler

 CPSID I

 PUSH {R4-R11}

 LDR R0, =RunPt

 LDR R1, [R0]

 STR SP, [R1]

next
 LDR R1, [R1,#4]
 LDR R2, [R1,#8] ; load sleep value
 CMP R2, #0 ; zero?
 BEQ next ; no -> keep looking

 STR R1, [R0]

 LDR SP, [R1]

 POP {R4-R11}

 CPSIE I

 BX LR

b) How does your OS implementation behave when all threads are sleeping, i.e. what happens
when all but one thread currently sleep and the last active/running thread calls OS_Sleep()?

Note that there are many different solutions for question a).

For the specific solution outlined above, the PendSV_Handler will go into an endless loop once triggered
from the last active thread’s OS_Sleep() call. This solution could be made to behave as expected by
ensuring that PendSV has the lowest interrupt priority and then temporarily enabling interrupts in the
PendSV_Handler while looking for a non-sleeping thread, such that the Systick_Handler can be fired to
keep counting down sleep times until one thread is woken up (sleep value becomes non-zero and loop in
PendSV_Handler thus exits).

The proper way to handle this situation, however, is to always have one never-ending, always-active so-
called Idle Task running (with lowest priority in case of priority scheduling). This takes care of any
situation in which all threads are sleeping, inactive (killed), blocked, etc.

EE445M/EE380L.6, Spring 2016 Midterm 7
Name:

Problem 4 (20 points): Thread Exit and Kill
Assume a basic round-robin OS kernel (as shown in Problem 3) with the following
OS_AddThread() implementation:

Given the following user code:

long* SetInitialStack(long *sp, void (*entry)(void)) {
 (sp) = (long)0x01000000L; / xPSR */
 (--sp) = (long)entry; / PC */
 (--sp) = (long)0x14141414L; / R14 */ = (long)OS_Kill;
 (--sp) = (long)0x12121212L; / R12 */
 (--sp) = (long)0x03030303L; / R3 */
 (--sp) = (long)0x02020202L; / R2 */
 (--sp) = (long)0x01010101L; / R1 */
 (--sp) = (long)0x000000000; / R0 */
 (--sp) = (long)0x11111111L; / R11 */
 (--sp) = (long)0x10101010L; / R10 */
 (--sp) = (long)0x09090909L; / R9 */
 (--sp) = (long)0x08080808L; / R8 */
 (--sp) = (long)0x07070707L; / R7 */
 (--sp) = (long)0x06060606L; / R6 */
 (--sp) = (long)0x05050505L; / R5 */
 (--sp) = (long)0x04040404L; / R4 */
 return sp;
}

int OS_AddThread(void(*task)(void)) { long sr;
 struct tcb* newPt;

 sr = StartCritical();

 newPt = AllocTcb(); // get TCB & stack, set SP to top of stack
 if(!newPt) { EndCritical(sr); return 0; }

 newPt->sp = SetInitialStack(newPt->sp, task);

 newPt->next = RunPt->next;
 RunPt->next = newPt;

 EndCritical(sr);
 return 1;
}

void main(void) {
 int i;
 OS_Init();
 OS_AddThread(Thread1);
 ...
 OS_Launch();
}

Thread1

 ...

 BX LR <--- PC

EE445M/EE380L.6, Spring 2016 Midterm 8
Name:

a) What happens when Thread1 exits normally (without calling OS_Kill())? In other words, if
the current PC points to the last BX LR return instruction in Thread1, where will the branch
go to and what line of code will be executed next? Hint: think about the value that will be in
the LR register during execution of Thread1 and thus when BX LR is executed.

b) Modify the OS kernel code shown above such that OS_Kill() will be automatically executed

whenever a thread added to the OS exits normally. You are only allowed to make
modifications to the kernel but not the user code, i.e. the OS_xxx interface must remain as is
and must work for an arbitrary number of threads. If you need additional code, show it in the
box below.

The link register (LR) will point to the value of R14 restored from the initial stack of the thread, i.e.
0x14141414. As such, the thread will branch to address 0x14141414 when executing the final BX lR
instruction, i.e. to an undefined address.

Two possible solutions:

(1) Simply replace the initial value of R14/LR with the address of the OS_Kill function to branch to
when executing the final BX LR in a thread.

(2) Write a wrapper routine that takes as argument a pointer of the main thread function and then
ensures that OS_Kill() is called after that thread function finishes:

void OS_ThreadWrapper(viod(*task)(void)) {
 *task();
 OS_Kill(); // never returns
}

Then, replace the PC entry point stored on the initial stack with the address of
OS_ThreadWrapper() and set the initial value of R0 to the actual thread entry address:

long* SetInitialStack(long *sp, void (*entry)(void)) {
 (sp) = (long)0x01000000L; / xPSR */
 *(--sp) = (long)entry; (long)OS_ThreadWrapper;
 *(--sp) = (long)0x14141414L;
 *(--sp) = (long)0x12121212L;
 *(--sp) = (long)0x03030303L;
 *(--sp) = (long)0x02020202L;
 *(--sp) = (long)0x01010101L;
 *(--sp) = (long)0x000000000; (long)entry;
…

EE445M/EE380L.6, Spring 2016 Midterm 9
Name:

Problem 5 (15 points): Synchronization and Deadlock
a) Given the two threads below, can any deadlock occur? If yes, why (show an execution

sequence leading to deadlock)? If not, why not (prove that there is no deadlock)?

b) Given the two threads below, can any deadlock occur? If yes, why (show an execution
sequence leading to deadlock)? If not, why not (prove that there is no deadlock)?

void Thread1(void) {
 OS_bWait(&file_mutex);
 ...
 OS_bWait(&memory_mutex);
 ...
 OS_bSignal(&memory_mutex);
 ...
 OS_bSignal(&file_mutex);
}

void Thread2(void) {
 OS_bWait(&memory_mutex);
 ...
 If(debug) {
 OS_bWait(&file_mutex);
 ...
 OS_bSignal(&file_mutex);
 }
 ...
 OS_bSignal(&memory_mutex);
}

Yes, deadlock can occur. Possible sequence:

1) Thread 1 acquires file_mutex
2) Thread 2 acquires memory_mutex
3) Thread 2 blocks on acquiring file_mutex (debug condition is true)
4) Thread 1 blocks on acquiring memory_mutex.

void Thread1(void) {
 OS_bWait(&file_mutex);
 ...
 OS_Wait(&available);
 ...
 OS_bSignal(&file_mutex);
}

void Thread2(void) {
 OS_bWait(&file_mutex);
 ...
 If(new_data) {
 OS_Signal(&available);
 }
 ...
 OS_bSignal(&file_mutex);
}

Yes, deadlock can occur. Possible sequence:

1) Thread 1 acquires file_mutex
2) Thread 1 blocks on available
3) Thread 2 blocks on file_mutex

EE445M/EE380L.6, Spring 2016 Midterm 10
Name:

c) Assume that the code is running on top of an OS that uses priority scheduling and a priority
ceiling protocol for all semaphores. For each of the examples above, can any deadlock still
occur? If yes, why (show an execution sequence leading to deadlock)? If not, why not (prove
that there is no deadlock)?

Example a)

No, deadlock cannot occur any more. As soon as one thread acquires either mutex, its priority will be
raised to the maximum and it can not be preempted any more until it releases that semaphore. The
priority ceiling protocol is equivalent to disabling interrupts, except that actual interrupts and interrupt-
driven background threads can still preempt any foreground thread.

Example b)

Deadlock can still occur, priority ceilings do not prevent this type of deadlock when actual
synchronization (not only mutual exclusion) is involved.

	Problem 1 (20 points): Critical Sections and Deadlock
	Problem 2 (20 points): Priority Scheduling
	Problem 3 (25 points): OS Sleep Support
	Problem 4 (20 points): Thread Exit and Kill
	Problem 5 (15 points): Synchronization and Deadlock

