Cortex M Assembly Instructions

Memory access instructions

LDR Rd, [Rn]

LDR Rd, [Rn,#off]
LDR Rd, =value
LDRH Rd, [Rn]

LDRH Rd, [Rn,#off]
LDRSH Rd, [Rn]
LDRSH Rd, [Rn,#off]
LDRB Rd, [Rn]

LDRB Rd, [Rn,#off]
LDRSB Rd, [Rn]
LDRSB Rd, [Rn,#off]
STR Rt, [Rn]

STR Rt, [Rn,#off]
STRH Rt, [Rn]

STRH Rt, [Rn,#off]
STRB Rt, [Rn]

STRB Rt, [Rn,#off]
PUSH {Rt}

POP {Rd}

ADR Rd, label
MOV{S} Rd, <op2>
MOV Rd, #iml6

MVN{S} Rd, <op2>
Branch instructions

B label ; branch
BEQ label ; branch
BNE label ; branch
BCS label ; branch
BHS label ; branch
BCC label ; branch
BLO label ; branch
BMI label ; branch
BPL label ; branch
BVS label : branch
BVC label ; branch
BHI label ; branch
BLS label ; branch
BGE label ; branch
BLT [label ; branch
BGT label ; branch
BLE label ; branch
BX Rm ; branch
BL l1abel ; branch
BLX Rm ; branch
Interrupt instructions
CPSIE 1
CPSID 1
Logical instructions

AND{S} {Rd,} Rn, <op2>
ORR{S} {Rd,} Rn, <op2>
EOR{S} {Rd,} Rn, <op2>
BIC{S} {Rd,} Rn, <op2>
ORN{S} {Rd,} Rn, <op2>

LSR{S} Rd, Rm, Rs
LSR{S} Rd, Rm, #n
ASR{S} Rd, Rm, Rs

load 32-bit number at [Rn] to Rd

load 32-bit number at [Rn+off] to Rd

set Rd equal to any 32-bit value (PC rel)
load unsigned 16-bit at [Rn] to Rd

load unsigned 16-bit at [Rn+off] to Rd
load signed 16-bit at [Rn] to Rd

load signed 16-bit at [Rn+off] to Rd
load unsigned 8-bit at [Rn] to Rd

load unsigned 8-bit at [Rn+off] to Rd
load signed 8-bit at [Rn] to Rd

load signed 8-bit at [Rn+off] to Rd
store 32-bit Rt to [Rn]

store 32-bit Rt to [Rn+off]

store least sig. 16-bit Rt to [Rn]

store least sig. 16-bit Rt to [Rn+off]
store least sig. 8-bit Rt to [Rn]

store least sig. 8-bit Rt to [Rn+off]
push 32-bit Rt onto stack

pop 32-bit number from stack into Rd

set Rd equal to the address at label

set Rd equal to op2
set Rd equal to iImil6,
set Rd equal to -op2

iml6 is O to 65535

Always

Equal

Not equal

Higher or same, unsigned
Higher or same, unsigned
Lower, unsigned <

Lower, unsigned <
Negative

Positive or zero
Overflow

No overflow

Z==0 Higher, unsigned >
Z==1 Lower or same, unsigned
Greater than or equal, signed
Less than, signed <

and N==V Greater than, signed >
if or NI=V Less than or equal, signed
indirect to location specified by Rm

to subroutine at label

to subroutine indirect specified by Rm

vV v

OrOFrRPOORFRPFROPRr

and

I
IV IA

L TR TR T T TR TR T TR TR TR T TR TR T T)
<<O
-

mh oy oy oy o o omh o= o= = = = = = = O
NZZ00<<ZZ0000ONN

enable interrupts (1=0)
disable interrupts (I1=1)

Rd=Rné&op2
Rd=Rn]op2 (op2
Rd=Rn”op2 (op2
Rd=Rn&(~op2) (op2 32 bits)

Rd=Rn|] (~op2) (op2 is 32 bits)

logical shift right Rd=Rm>>Rs (unsigned)
logical shift right Rd=Rm>>n (unsigned)
arithmetic shift right Rd=Rm>>Rs (signed)

(op2 32 bits)
32 bits)

32 bits)

IA

Cortex M Assembly Instructions 2

ASR{S} Rd, Rm, #n ; arithmetic shift right Rd=Rm>>n (signed)

LSL{S} Rd, Rm, Rs ; shift left Rd=Rm<<Rs (signed, unsigned)

LSL{S} Rd, Rm, #n ; shift left Rd=Rm<<n (signed, unsigned)
Arithmetic instructions

ADD{S} {Rd,} Rn, <op2> ; Rd = Rn + op2

ADD{S} {Rd,} Rn, #iml2 ; Rd = Rn + iml12, iml12 is O to 4095

SUB{S} {Rd,} Rn, <op2> ; Rd = Rn - op2

SUB{S} {Rd,} Rn, #iml2 ; Rd = Rn - iml2, iml2 is O to 4095

RSB{S} {Rd,} Rn, <op2> ; Rd = op2 - Rn

RSB{S} {Rd,} Rn, #iml12 ; Rd = iml12 — Rn

CMP Rn, <op2> ; Rn — op2 sets the NZVC bits

CMN Rn, <op2> ; Rn - (~op2) sets the NzZVC bits

MUL{S} {Rd,} Rn, Rm ; Rd = Rn * Rm signed or unsigned

MLA Rd, Rn, Rm, Ra ; Rd = Ra + Rn*Rm signed or unsigned

MLS Rd, Rn, Rm, Ra ; Rd = Ra - Rn*Rm signed or unsigned

ubiv {Rd,} Rn, Rm ; Rd = Rn/Rm unsigned

SDIV {Rd,} Rn, Rm ; Rd = Rn/Rm signed

Notes Ra Rd Rm Rn Rt represent 32-bit registers
value any 32-bit value: signed, unsigned, or address
{S} if S is present, instruction will set condition codes
#iml2 any value from 0 to 4095
#iml6 any value from O to 65535
{Rd,} if Rd is present Rd is destination, otherwise Rn
#n any value from O to 31
#off any value from -255 to 4095
label any address within the ROM of the microcontroller

op2 the value generated by <op2>
Examples of flexible operand <op2> creating the 32-bit number. E.g., Rd = Rn+op2
ADD Rd, Rn, Rm ; Op2 = Rm
ADD Rd, Rn, Rm, LSL #n ; op2 = Rm<<n Rm 1is signed, unsigned
ADD Rd, Rn, Rm, LSR #n ; op2 = Rm>>n Rm is unsigned
ADD Rd, Rn, Rm, ASR #n ; op2 = Rm>>n Rm is signhed

ADD Rd, Rn, #constant ; op2 = constant, where X and Y are hexadecimal digits:
e produced by shifting an 8-bit unsigned value left by any number of bits
e in the form OxO0XYOOXY
e in the form OXXY0OOXY0O 256k Flash | 0¥0000-0000
e inthe form OXXYXYXYXY ROM 0x0003.FFFF

RO

S% 32k RAM 0x2000.0000

R3 Condition code bits
R N negative 0x2000.7FFF

General R5 Z zero

purpose R6 i

registers B> V signed overflow 1/0 ports
R8 C carry or 0x400F.FFFF

R9 unsigned overflow

R10
R12 Internal /o | 9XE000.0000

R12 PPB
Stack pointer [R13 (MSP) OXEQ04.1FFF
Link register | __R14 (LR)

Program counter R15 (PC)

0x4000.0000

DCB 1,2,3 ; allocates three 8-bit byte(s)
DCW 1,2,3 ; allocates three 16-bit halfwords
DCD 1,2,3 ; allocates three 32-bit words
SPACE 4 ; reserves 4 bytes

