
The University of Texas at Austin
Department of Electrical and Computer Engineering

Real-Time Systems / Real-Time Operating Systems
EE445M/EE380L.12, Spring 2018

Final Exam Solutions
Date: May 10, 2018

UT EID:

Printed Name:

Last, First

Your signature is your promise that you have not cheated and will not cheat on this exam, nor
will you help others to cheat on this exam:

Signature:

Instructions:

• Open book and open notes.
• No calculators or any electronic devices (turn cell phones off).
• Please be sure that your answers to all questions (and all supporting work that is required)

are contained in the space (boxes) provided.
• Anything outside the boxes will be ignored in grading.
• For all questions, unless otherwise stated, find the most efficient (time, resources)

solution.

Problem 1 20

Problem 2 15

Problem 3 20 + 10

Problem 4 25

Problem 5 10

Problem 6 5

Problem 7 5

Total 100 + 10

EE445M/EE380L.12, Spring 2018 Final Solutions 2
Name:

Problem 1 (20 points): Miscellaneous
a) Does it make sense to give a CPU-bound thread higher priority for disk I/O than an I/O

bound thread? Why? Explain your answer briefly.

b) A virtual memory system with paging can have external fragmentation, true or false? Why or
why not?

c) Virtual address sizes must be the same as physical address sizes, true or false, and why?
What determines the size of virtual and physical addresses?

d) Describe two situations in which spinlock (busy waiting) semaphores can be more
appropriate than blocking ones.

True, for the same reason that I/O-bound threads should get higher priority for the CPU. If a CPU-bound
thread must wait for I/O behind I/O-bound threads, we could end up in a situation where all of the
threads are waiting for I/O and the CPU is idle. Better to finish the I/O for the CPU-bound threads as
quickly as possible so they can get keep the CPU busy; this increases our chances of keeping all of the
system components busy at all times.

False. Paging is technique in which logical memory is broken into blocks of same size called pages, such
that the physical address space of a process can be non-contiguous.

False. The size of physical addresses is determined by the hardware. The size of virtual addresses by the
width of page table entries, so it can be either larger or smaller than physical addresses.

Very short critical sections

Tightly interacting threads (very short expected wait times)

When ultra-low latency / very short reaction time is required

Implementing locks on multiprocessors with true concurrency, where priorities don’t matter.

EE445M/EE380L.12, Spring 2018 Final Solutions 3
Name:

e) Assume you have a system in which there can be a circular wait pattern in the resource-
allocation graph. Is this a definite sign of a deadlock? Why or why not?

f) Can a system with all jobs having the same priority ever suffer from the priority inversion
problem? Why or why not?

g) Consider an RTOS implementing a priority scheduler, where two tasks having the same
priority is not allowed (such as in uCOS). Does the OS ever require a context switch in the
default periodic SysTick handler?

Problem 2 (15 points): Thread Synchronization
Malek, Shailesh, and Shan go to an Indian restaurant at a busy time of the day. The waiter
apologetically explains that the restaurant can provide only two pairs of spoons (for a total of
four spoons) to be shared among the three people. Shailesh proposes that all four spoons be
placed in an empty glass at the center of the table and that each diner should obey the following
protocol (where spoon is a semaphore that is initialized to 4):

No. This is not a definite sign of deadlock. The other conditions for deadlock must be satisfied (hold-and-
wait, mutual exclusion and no preemption). While a circular wait pattern implies both mutual exclusion
(i.e. waiting in the first place) and hold-and-wait, the no preemption condition may still not hold.

No. The priority inversion problem refers to the problem where lower priority jobs end up blocking
higher priority jobs from running. If all jobs have the same priority, then clearly this cannot happen.

No. In pure priority scheduling, a context switch is only necessary if a thread with higher priority than
the currently running one wakes up, which cannot happen during normal SysTick. With one exception:
when SysTick handles sleep expiration, a higher priority thread can be woken up as part of that, which
then requires a context switch in the SysTick handler.

while (!had_enough_to_eat()) {
 OS_Wait(&spoon);
 OS_Wait(&spoon);
 eat();
 OS_Signal(&spoon);
 OS_Signal(&spoon);
}

EE445M/EE380L.12, Spring 2018 Final Solutions 4
Name:

a) Can this dining plan lead to a deadlock? Explain your answer.

b) Can there ever be a deadlock depending on the number of spoons? If so, show such a
deadlock scenario. What is the minimum number of spoons for there not to be a deadlock?

c) Suppose now that instead of three there will be an arbitrary number of D diners. Furthermore,
each diner d = 1..D may require a different number of Sd spoons to eat. For example, it is
possible that one of the diners is an octopus, who for some reason refuses to begin eating
before acquiring Soctopus = 8 spoons. What is the smallest number of spoons needed to ensure
that deadlock can not occur?

No. Deadlock cannot occur because there are enough spoons to guarantee that, even if all 3 diners grab
one spoon and then get preempted, at least one of the three diners will be able to get one additional, i.e.
the two spoons that he/she needs. Once the diner finishes, he/she will release the spoons for someone else
to use. So, eventually everyone finishes.

Yes. There can be a deadlock depending on the number of spoons.

Example of deadlock scenario with only 3 available spoons and 3 persons each requiring 2 spoons to eat:
It might happen that each person gets one spoon, then is preempted and is blocked forever waiting for the
other spoon to be available. This will result into deadlock.

In general: the minimum number of spoons required to avoid deadlock is 4 (clearly, there is a deadlock
with 3, but none with 4).

∑dSd – D + 1. This guarantees that every diner can get all but one of the spoons it needs, with one
additional spoon to guarantee that at least one diner gets all of the spoons it needs.

EE445M/EE380L.12, Spring 2018 Final Solutions 5
Name:

Problem 3 (20 + 10 points): Synchronization Primitives
In class, we discussed that atomic test-and-set and more generalized compare-and-swap
operations can provide minimal canonical primitives to solve any synchronization problem, and
that such operations have thus historically been directly implemented in hardware in many
machines.
a) Our ARM does not provide built-in test-and-set or compare-and-swap operations. Shown

below is C code for a software implementation on the ARM. This code is not atomic and thus
has race conditions. Describe possible race conditions. Modify the code to make it atomic.
You can assume that standard OS primitives are available:

void DisableInterrupts(void);
void EnableInterrupts(void);
long StartCritical(void);
void EndCritical(long);

int compare_and_swap(int* dst, int expected, int new) {

 int cur;

 long sr = StartCritical();

 cur = *dst;

 if(cur == expected) {

 *dst = new;

 }

 EndCritical(sr);

 return cur;

}

int test_and_set(int* dst) { // binary version

 return compare_and_swap(dst, 0, 1);

}

Race condition if thread gets preempted after make a local copy of *dst in cur, and another thread
updates *dst in the middle. Then both threads may assume that cur == expected, return the same cur,
and update *dst with different new values non-deterministically.

EE445M/EE380L.12, Spring 2018 Final Solutions 6
Name:

b) Implement binary spin-lock semaphores in C using only test-and-set or compare-and-swap
primitives.

void OS_bInitSemaphore(int *semaPt) { // initialize to be unlocked

 *semaPt = 0; // 0 is unlocked, 1 is locked

 alt.: *semaPt = 1; // traditional 1 is unlocked, 0 is locked

}

void OS_bWait(int *semaPt) {

 while(test_and_set(semaPt) == 1) ;

 alt.: while(compare_and_swap(semaPt, 1, 0) == 0);

}

void OS_bSignal(int* semaPt) {

 *semaPt = 0; // can use compare_and_swap, but atomic as is

 alt.: *semaPt = 1; // can use test_and_set(), but not needed

}

c) In addition to semaphores themselves, test-and-set and compare-and-swap primitives allow
implementing so-called non-blocking or lock-free data structures that are made thread-safe
without traditional coarse-grain and expensive blocking using semaphores. Shown below is
the code for inserting a TCB into the OS ready queue as called from OS_AddThread() shown
in the midterm. Modify (add/delete/replace) the code to make it thread-safe using only
compare-and-swap or test-and-set.

void Q_Insert(struct TCB **queue, struct TCB *new) {

 do {

 new->next = *queue;

 *queue = new;

 } while(compare_and_swap(queue, new->next, new) != new->next);

}

EE445M/EE380L.12, Spring 2018 Final Solutions 7
Name:

d) (Required for graduate students, extra credit for undergraduates) What are advantages
and disadvantages of lock-free programming versus use of semaphores? When can and
should it be used, when can it not be used?

Advantages: Avoids many issues with locking and semaphores, such as deadlocks (deadlock free if
lock-free is used exclusively and not mixed with semaphores) or priority inversions. Also can be less
overhead and higher performance. And can be used in interrupt handlers.

Disadvantages: Hard in the general case (e.g .try implementing lock-free removing from a queue…).
It is also a form of busy-waiting, so wastes cycles if there is a lot of contention for a resource. Note,
however, that waiting/spinning in lock-free programming is *not*about blocking, i.e. threads actively
waiting on each other (spinning until some shared variable update is performed by another thread, as
is done in the semaphore implementation). It is just waiting until the resource is not contended so an
update can hbe performed without conflict (spinning until there is *no* update by another thread, as
is in the queue case). Which should always be brief, i.e. the default assumption is for the update to
succeed and conflicts requiring wait/spinning to be the exception. This is different from actively
locking out other threads, where the default assumption is that there will be a conflict that needs
blocking/suspension.

e) (Required for graduate students, extra credit for undergraduates) Instead of native test-

and-set or compare-and-swap, the ARM provides hardware support for synchronization
through LDREX/STREX instructions. Implement compare-and-swap in assembly using
LDREX/STREX.

compare_and_swap ; pointer in R0, expected in R1, new in R2

 LDREX R3,[R0]

 CMP R3,R1

 BNE end

 STREX R12,R2,[R0]

 CMP R12,#0

 BNE compare_and_swap

end

 MOV R0,R3

 BX LR

EE445M/EE380L.12, Spring 2018 Final Solutions 8
Name:

Problem 4 (25 points): Filesystems
Assume you have a disk with a filesystem using indexed allocation, where the first blocks on the
disk store the directory information and the global index table.

a) Assuming a disk with 65536 blocks of 512 byte each, what is the size of the index table and
how many blocks on disk does it occupy? What is the largest disk size supported if the index
table must fit into one disk block? What if it needs to fit into half a block?

b) What is the reliability of this filesystem? Can the files on disk be partially or completely
recovered if i) the directory block(s), ii) the index table block(s) or iii) any other block(s) on
disk are damaged? What can and cannot be recovered in each case?

c) To improve reliability (while maintaining fast random access capabilities), indexed allocation
can be combined with linked allocation. Shown below is a disk using such a combined
filesystem, where the first two blocks on disk normally store the directory and index table,

Size of index table &
number of index blocks
for 65536 block disk?

16-bit indices to represent 65536 blocks.

65536 entries in the index table.
For a total of 65536*2 = 128kB, which is 128kB/512B = 256 blocks.

Largest disk size with
1 block index table?

512 bytes can hold 512*1 or 256*2 index table.

A disk with 512 blocks would require 2-byte indices.
So only 256 entries fit, for a 256-block or 256*512 = 128kB disk.

Largest disk size with
½ block index table?

A half block can hold a 256*1 index table.

1-byte indices are enough for a 256 block disk.
So same as above, a 256-block or 128kB disk.

Block(s) lost Recoverable?

i) Directory

No files can be recovered.
Only used vs. unused data blocks can be recovered from the index table, but

mapping of blocks to files is lost.

ii) Index table

No files can be recovered. No data can be recovered.
Mapping of files to blocks on disk is lost.

Information about used vs. unused blocks on disk is lost.

iii) Other

Files can be partially recovered.

Only the damaged block in corresponding files are lost.

EE445M/EE380L.12, Spring 2018 Final Solutions 9
Name:

Directory Index Table
File

name
Start
block

Start
index

Size
(blocks) Block

 3 0 3 0 3

9 3 5 1 4

7 8 1 2 8

 3 9

 4 6

 5 14

 6 13

 7 15

 8 7

 9

 10

 11

 12

 13

 14

 15

but have been damaged. The first two bytes of each regular block otherwise contain a pointer
to the address of the next block in the file, 0xFFFF if the block is the last one, or 0x0000 if
the block does not belong to a file (is empty). Assuming the directory and index blocks have
both been damaged, what can be recovered from the remaining disk information? For the
specific disk content below, recover as much information as possible to fill in the missing
directory and index table information.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0x0000 0x0004

0x0008 0x0000 0x000E 0xFFFF

0xFFFF 0x0006 0x0000 0x0000

0x0000 0x000F 0x000D 0xFFFF

C
an

 n
ot

 b
e

re
co

ve
re

d

EE445M/EE380L.12, Spring 2018 Final Solutions 10
Name:

d) How would the recovered directory and index table be different when block 14 would also be
unreadable in the example above?

Problem 5 (10 points): Relocation
Given the following simple user program to be loaded and executed by the OS:

// Display_Message prototype
#include "display.h"

int live = 0;
char* msg = "Hello";

void inc(void)
{
 live++;
}

int main(void)
{
 inc();
 Display_Message(0, 0, msg, live);
}

For each of the following two disassembled program data and code regions as generated by
different compiler variants, is the program position-independent, i.e. will it be able to execute as
is when loaded into an arbitrary location in memory? If not, indicate which lines of code are not
and show how the code will need to be relocated by the OS at load time. You can assume that the
OS will set R9 appropriately when launching the process to execute the program.

Second file (starting at block 9) would be recovered as two separate files:
One starting at block 9 (index 3) with size of 3 blocks (last block marked as damaged).
Second one starting at block 13 (index 6) with size of 2 blocks.

Alternatively:
First file would have one less block. Index table entry 5 would be removed and all entries below (6-8)
would move up by one (to position 5-7). Directory start indices to be adjusted accordingly.

EE445M/EE380L.12, Spring 2018 Final Solutions 11
Name:

a)

0x20000000 0000 DCW 0x0000

0x20000004 … DCB “Hello”,0

 Display_Message

0x00000092 F8DFC004 LDR r12,[pc,#4] ; @0x0000009A

0x00000096 4760 BX r12

0x0000009A 00000000 DCD 0x00000000 <-- Needs patch

 inc

0x00000110 4802 LDR r0,[pc,#8] ; @0x0000011C

0x00000112 6800 LDR r0,[r0,#0x00]

0x00000114 1C40 ADDS r0,r0,#1

0x00000116 4901 LDR r1,[pc,#4] ; @0x0000011C

0x00000118 6008 STR r0,[r1,#0x00]

0x0000011A 4770 BX lr

0x0000011C 20000000 DCD 0x20000000 <-- Needs patch

 main

0x00000120 B510 PUSH {r4,lr}

0x00000122 F7FFFFF5 BL inc (0x00000110)

0x00000126 4804 LDR r0,[pc,#16] ; @0x00000138

0x00000128 4A04 LDR r2,[pc,#16] ; @0x0000013C

0x0000012A 2100 MOVS r1,#0x00

0x0000012C 6803 LDR r3,[r0,#0x00]

0x0000012E 4608 MOV r0,r1

0x00000130 F7FFFFAF BL Display_Message (0x00000092)

0x00000134 2000 MOVS r0,#0x00

0x00000136 BD10 POP {r4,pc}

0x00000138 20000000 DCD 0x20000000 <-- Needs patch

0x0000013C 20000004 DCD 0x20000004 <-- Needs patch

Not position independent. Hard-coded pointers to addresses in the data segment as marked above
need to be patched on loading, when actual location of data segment is known. Likewise, hard-coded
pointer to address of function called by Display_Message needs to be patched to point to the actual
function to be called.

EE445M/EE380L.12, Spring 2018 Final Solutions 12
Name:

b)

0x20000004 0000 DCW 0x0000

0x20000008 … DCB “Hello”,0

 Display_Message

0x00000040 DF2A SVC 0x2A

0x00000042 4770 BX lr

 inc

0x000000BC 4803 LDR r0,[pc,#12] ; @0x000000CC

0x000000BE 4448 ADD r0,r0,r9

0x000000C0 6800 LDR r0,[r0,#0x00]

0x000000C2 1C40 ADDS r0,r0,#1

0x000000C4 4901 LDR r1,[pc,#4] ; @0x000000CC

0x000000C6 4449 ADD r1,r1,r9

0x000000C8 6008 STR r0,[r1,#0x00]

0x000000CA 4770 BX lr

0x000000CC 00000004 DCD 0x00000004

 main

0x000000D0 B510 PUSH {r4,lr}

0x000000D2 F7FFFFF3 BL inc (0x000000BC)

0x000000D6 4805 LDR r0,[pc,#20] ; @0x000000EC

0x000000D8 4448 ADD r0,r0,r9

0x000000DA 4A05 LDR r2,[pc,#20] ; @0x000000F0

0x000000DC 444A ADD r2,r2,r9

0x000000DE 2100 MOVS r1,#0x00

0x000000E0 6803 LDR r3,[r0,#0x00]

0x000000E2 4608 MOV r0,r1

0x000000E4 F7FFFFAC BL Display_Message (0x00000040)

0x000000E8 2000 MOVS r0,#0x00

0x000000EA BD10 POP {r4,pc}

0x000000EC 00000004 DCD 0x00000004

0x000000F0 00000008 DCD 0x00000008

Program is fully position independent. All references to data segment are relative to R9. All absolute
references to other code locations replaced by SVC style calls.

EE445M/EE380L.12, Spring 2018 Final Solutions 13
Name:

Problem 6 (5 points): Heap

Consider a 4kB heap in the state as shown below after the given sequence of malloc() and
free() calls has been executed. Assume that the heap manager does not require any overhead
for extra meta-data, and that the heap is allocated from bottom to top, i.e. a block always ends up
being placed at the bottom of its chosen free space region. What allocation strategy
(first/best/worst fit) does the heap use?

Problem 7 (5 points): CAN
Consider a CAN network with 4 microcontrollers in which microcontroller M0 periodically
sends messages with ID 14 to microcontroller M1 every 31ms, and microcontroller M2
periodically sends messages with ID 4 to microcontroller M3 every 11ms. What is the maximum
jitter experienced by M1 and M3 in receiving their messages? Show the result as a function of
the frame delay tf (= time to complete a single message transfer).

Heap

0x1000

0x0C00

0x0800

0x0400

0x0000

p1 = Heap_Malloc(1792);
p2 = Heap_Malloc(1024);
Heap_Free(p1);
p3 = Heap_Malloc(768);
p4 = Heap_Malloc(512);
Heap_Free(p3);

p1 and p2 malloc are the same for any fit.
Then, p3 malloc is either first or worst fit (since it ends up in the
larger of the two free spaces).
Then, p4 malloc is either first or best fit (since it ends up in what is
now the smaller of the two free spaces).

Hence, the only fit that satisfies all cases is first fit.

Message with ID4 has higher priority than message with ID14, so messages with ID14 can be delayed by
up to tf.

However, the CAN bus is not preemptive, so in the worst case, if a message with ID4 wants to be sent
right after a message with ID14 has started, it will need to wait until the bus is free, so can also be
delayed by up to tf.

Max jitter in both cases is tf.

	Problem 1 (20 points): Miscellaneous
	Problem 2 (15 points): Thread Synchronization
	Problem 3 (20 + 10 points): Synchronization Primitives
	Problem 4 (25 points): Filesystems
	Problem 5 (10 points): Relocation
	Problem 6 (5 points): Heap
	Heap
	0x1000
	0x0C00
	0x0800
	0x0400
	0x0000
	Problem 7 (5 points): CAN

