
The University of Texas at Austin
Department of Electrical and Computer Engineering

Real-Time Systems / Real-Time Operating Systems
EE445M/EE380L.12, Spring 2018

Midterm
Date: March 20, 2018

UT EID:

Printed Name:

Last, First

Your signature is your promise that you have not cheated and will not cheat on this exam, nor will
you help others to cheat on this exam:

Signature:

Instructions:

• Open book and open notes.
• No calculators or any electronic devices (turn cell phones off).
• Please be sure that your answers to all questions (and all supporting work that is required)

are contained in the space (boxes) provided.
• Anything outside the boxes will be ignored in grading.
• For all questions, unless otherwise stated, find the most efficient (time, resources) solution.

Problem 1 25

Problem 2 15

Problem 3 25

Problem 4 15

Problem 5 20

Total 100

EE445M/EE380L.12, Spring 2018 Midterm 2
Name:

Problem 1 (25 points): Critical Sections, Reentrance and Deadlock
Given the following implementation of a simple heap that allocates blocks of fixed 1kB size:

a) Is this code thread-safe, reentrant and deadlock-free? Point out all and any critical sections,
reentrance issues or deadlocks

b) Fix the heap by showing the necessary modifications (insertions, deletions, replacements) of
the code above to make it thread-safe, reentrant and deadlock-free. Your solution should
introduce the least jitter using standard binary semaphores:

void OS_InitSemaphore(sema4type *semaPt, long value);
void OS_bWait(sema4type *semaPt);
void OS_bSignal(sema4type *semaPt);

long Heap[HEAP_BLKS][256];

void Heap_Init(void) {

 unsigned i;

 for(i = 0; i < HEAP_BLKS; i++) {

 Heap[i][0] = -1;

 }

}

void Heap_Free(long* blk) {

 blk[-1] = -1;

}

long* Heap_Alloc(void) {

 unsigned i;

 for(i = 0; i < HEAP_BLKS; i++) {

 if(Heap[i][0] < 0) break;

 }

 if(i == HEAP_BLKS) {

 return 0; // heap full

 }

 Heap[i][0] = 0x0000DEAD;

 return &Heap[i][1];

}

EE445M/EE380L.12, Spring 2018 Midterm 3
Name:

c) Given the code for a priority scheduler that uses the corrected heap from b) with blocking
semaphores, where the priority queue management (Q_xxx()) functions themselves are not
thread-safe/reentrant, does this code have any critical sections, non-reentrance or deadlocks?
List all issues and indicate any code changes necessary to fix the code with minimal intrusion
and jitter. Is a solution purely using semaphores possible? If yes, show it. If not, why not?

struct tcb {
 long *sp;
 struct TCB *next;
 unsigned priority;
 long stack[128];
}

struct TCB *RunPt; // current
struct TCB *ReadyQ = 0;

int OS_AddThread(void
 (*task)(void), unsigned prio) {
 struct TCB *new;

 DisableInterrupts();

 new = (struct TCB*)Heap_Alloc();
 if(!new) {
 return 0;
 }

 new->sp = InitStack(
 &new->stack[127],
 task);
 new->priority = prio;

 Q_Insert(&ReadyQ, new);

 EnableInterrupts();

 return 1;
}

void OS_Kill(void) {

 DisableInterrupts();

 Q_Remove(&ReadyQ, RunPt);

 Heap_Free(RunPt);

 ContextSwitch(); // trig. PendSV

 EnableInterrupts();

}

void Systick_Handler(void) {

 if(ReadyQ != RunPt) {

 ContextSwitch(); // PendSV

 // switches to ReadyQ

 }

}

EE445M/EE380L.12, Spring 2018 Midterm 4
Name:

Problem 2 (15 points): OS Core Functionality
Assume a basic priority-based OS kernel (as shown in Problem 1) with the following InitStack()
implementation and given user code:

a) What will be the behavior of this program, i.e. what is the sequence of events in the system
and what messages will appear on the ST7735 display, if any?

long* InitStack(long *sp, void (*entry)(void)) {
 (sp) = (long)0x01000000L; / xPSR */
 (--sp) = (long)entry; / PC */
 (--sp) = (long)entry; / R14 */
 (--sp) = (long)0x12121212L; / R12 */
 (--sp) = (long)0x03030303L; / R3 */
 (--sp) = (long)0x02020202L; / R2 */
 (--sp) = (long)0x01010101L; / R1 */
 (--sp) = (long)0x000000000; / R0 */
 (--sp) = (long)0x11111111L; / R11 */
 (--sp) = (long)0x10101010L; / R10 */
 (--sp) = (long)0x09090909L; / R9 */
 (--sp) = (long)0x08080808L; / R8 */
 (--sp) = (long)0x07070707L; / R7 */
 (--sp) = (long)0x06060606L; / R6 */
 (--sp) = (long)0x05050505L; / R5 */
 (--sp) = (long)0x04040404L; / R4 */
 return sp;
}
void Thread1(void) {
 static int i = 0;
 ST7735_Message(0, 0,
 “Hello world”, i++);
}

void main(void) {
 OS_Init();
 OS_AddThread(Thread1, 0);
 OS_Launch(); // does not return
}

EE445M/EE380L.12, Spring 2018 Midterm 5
Name:

b) Describe minimal modifications of the OS to allow parameters being passed to threads via:
 OS_AddThread(void (*task)(int), unsigned prio, int param)
as shown in the example below.

Problem 3 (25 points): Periodic Real-Time Tasks
As discussed in class, many real-time systems use a periodic task model in which foreground user
tasks (such as main control algorithms) are expected to execute periodically with a well-defined
and fixed (e.g. based on control theory) rate (and corresponding deadline).
a) Develop an implementation of a periodic PID task that executes with a fixed period P (in ms).

You can assume that the following typical OS time management functions are available:
unsigned long OS_MsTime(void); // system time in ms
void OS_Sleep(unsigned long sleepTime); // in ms

Bonus points for an implementation that maximizes accuracy and minimizes jitter.
void PID(void) {

 while(1) {

 PIDWork();

 }

}

void Thread1(int i) {
 ST7735_Message(0, 0,
 “Hello world”, i);
} // should print “Hello world: 42”

void main(void) {
 OS_Init();
 OS_AddThread(Thread1, 0, 42);
 OS_Launch(); // does not return
}

EE445M/EE380L.12, Spring 2018 Midterm 6
Name:

b) Many RTOSs will provide a native realization of periodic (foreground) tasks. List the changes
needed to extend a typical OS (such as the one from Problems 1-2) to provide periodic tasks:
 OS_AddPeriodicForegroundThread(void (*task)(void), …,
 unsigned long period);
as shown below. Sketch (only) the modifications/extensions of basic OS routines as needed.

c) Assuming your priority-scheduled system is running a sporadic/aperiodic foreground task Ti
with execution time Ei at each priority level 0 ≤ i < N, what is the maximum jitter experienced
by a periodic foreground task Tm at priority m? Assume that there are no background threads.

// run every 10ms
void PID(void) {
 PID_Work();
}

void main(void) {
 OS_Init();
 OS_AddPeriodicForegroungThread(PID, 5, 10);
 OS_Launch(); // does not return
}

EE445M/EE380L.12, Spring 2018 Midterm 7
Name:

Problem 4 (15 points): Semaphores
Given the following spin-lock semaphore implementation:

struct Sema4 {

 long value;

};

typedef struct Sema4 Sema4Type;

void OS_InitSemaphore(

 Sema4Type *semaPt, int value)

{

 int sr;

 sr = StartCritical();

 semaPt->value = value;

 EndCritical(sr);

}

void OS_Wait(Sema4Type *semaPt) {

 int sr;

 sr = StartCritical();

 while(*semaPt <= 0){

 EndCritical(sr);

 sr = StartCritical();

 }

 (*semaPt)--;

 EndCritical(sr);

}

void OS_bSignal(Sema4Type *semaPt) {

 int sr;

 sr = StartCritical();

 semaPt->value = 1;

 EndCritical(sr);

}

EE445M/EE380L.12, Spring 2018 Midterm 8
Name:

a) This code has bugs. List and explain all the issues in the code, and describe the minimal
changes required to fix each issue (you don’t need to show modifications in the code above).

b) Modify the semaphore implementation such that it can avoid deadlocks if, by bad design, one
of the threads happens to call OS_bWait() twice, i.e. calls OS_bWait() a second time on the
same semaphore while it is already holding that semaphore as show in the example case below.
Show the minimal necessary modifications (insertions, deletions, replacements) of the
semaphore code such that this example executes without deadlocking (while preserving
intended semaphore semantics).

Sema4Type display_mutex;

void Display_DrawLine(int x1, int y1, int x2, int y2) {
 OS_bWait(&display_mutex);
 …
 OS_bSignal(&display_mutex);
}

void Display_DrawLogo(void) {
 OS_bWait(&display_mutex);
 …
 Display_DrawLine(0, 0, 144, 42);
 …
 OS_bSignal(&mutex);
}

void Thread1(void) {
 …
 Display_DrawLogo();
 …
}

EE445M/EE380L.12, Spring 2018 Midterm 9
Name:

Problem 5 (20 points): Real-Time Scheduling
Consider a real-time system running three periodic tasks with the following periods (= deadlines)
and execution times. You can assume zero context switch and interrupt overhead.

Task Execution Time Period
Airbag (A) 1ms 3ms

Warning (W) 1ms 6ms
Engine (E) e 4ms

a) What is the maximum execution time e of taks E such that this task set is schedulable using an
RMS strategy without missing deadlines? What is the processor utilization in this case? Draw
one iteration of the resulting schedule.

 A

 W

 E

b) What is the maximum execution time e of taks E such that this task set is schedulable using an
EDF strategy without missing deadlines? What is the processor utilization in this case? Draw
one iteration of the resulting schedule.

 A

 W

 E

Time

Time

	Problem 1 (25 points): Critical Sections, Reentrance and Deadlock
	Given the following implementation of a simple heap that allocates blocks of fixed 1kB size:
	Problem 2 (15 points): OS Core Functionality
	Assume a basic priority-based OS kernel (as shown in Problem 1) with the following InitStack() implementation and given user code:
	Problem 3 (25 points): Periodic Real-Time Tasks
	As discussed in class, many real-time systems use a periodic task model in which foreground user tasks (such as main control algorithms) are expected to execute periodically with a well-defined and fixed (e.g. based on control theory) rate (and corres...
	Problem 4 (15 points): Semaphores
	Given the following spin-lock semaphore implementation:
	Problem 5 (20 points): Real-Time Scheduling

