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Problem 1 (25 points): Critical Sections, Reentrance and Deadlock 
Given the following implementation of a simple heap that allocates blocks of fixed 1kB size:   

a) Is this code thread-safe, reentrant and deadlock-free? Point out all and any critical sections, 
reentrance issues or deadlocks 
 
Heap_Alloc has RMW sequence on heap blocks (element 0), not reentrant.  
 
Technically, there is also potential race condition between Heap_Init (W) or Heap_Free (W) and 
Heap_Alloc (RMW). However, since the MW sequence in Heap_Alloc only happens if the R was 
negative, and since the other routines can only set to negative, there is no actual race condition. To 
be on the safe side, it is ok to use mutex around writes in Heap_Init/Free.  
 

b) Fix the heap by showing the necessary modifications (insertions, deletions, replacements) of 
the code above to make it thread-safe, reentrant and deadlock-free. Your solution should 
introduce the least jitter using standard binary semaphores:  

void OS_InitSemaphore(sema4type *semaPt, long value); 
void OS_bWait(sema4type *semaPt);  
void OS_bSignal(sema4type *semaPt); 

long Heap[HEAP_BLKS][256]; 

 

Sema4Type Heap_Mutex; 

 

void Heap_Init(void) { 

  unsigned i; 

 

  OS_InitSemaphore(&Heap_Mutex,1); 

 

  for(i = 0; i < HEAP_BLKS; i++) { 

 

    Heap[i][0] = -1; 

 

  } 

} 

 

void Heap_Free(long* blk) { 

  

  blk[-1] = -1; 

 

} 

long* Heap_Alloc(void) { 

  unsigned i; 

 

  OS_bWait(&Heap_Mutex); 

 

  for(i = 0; i < HEAP_BLKS; i++) { 

    if(Heap[i][0] < 0) break; 

  } 

 

  if(i == HEAP_BLKS) {  

    OS_bSignal(&Heap_Mutex); 

 

    return 0; // heap full 

  } 

 

  Heap[i][0] = 0x0000DEAD; 

 

  OS_bSignal(&Heap_Mutex); 

 

  return &Heap[i][1];  

} 
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c) Given the code for a priority scheduler that uses the corrected heap from b) with blocking 
semaphores, where the priority queue management (Q_xxx()) functions themselves are not 
thread-safe/reentrant, does this code have any critical sections, non-reentrance or deadlocks? 
List all issues and indicate any code changes necessary to fix the code with minimal intrusion 
and jitter. Is a solution purely using semaphores possible? If yes, show it. If not, why not?  

struct tcb { 
  long *sp; 
  struct TCB *next; 
  unsigned priority; 
  long stack[128];  
} 
 

struct TCB *RunPt; // current 
struct TCB *ReadyQ = 0;  
 

int OS_AddThread(void   
 (*task)(void), unsigned prio) { 
  struct TCB *new; 
 

  DisableInterrupts(); 
 

  new = (struct TCB*)Heap_Alloc(); 
  if(!new) { 
    return 0; 
  } 
 

  new->sp = InitStack( 
             &new->stack[127], 
             task); 
  new->priority = prio; 
   

  DisableInterrupts(); 

 

  Q_Insert(&ReadyQ, new); 
 

  EnableInterrupts(); 
 

  return 1; 
} 

void OS_Kill(void) { 

   

  DisableInterrupts(); 

 

  Q_Remove(&ReadyQ, RunPt); 

 

  Heap_Free(RunPt); 

 

  ContextSwitch(); // trig. PendSV  

 

  EnableInterrupts(); 

 

} 

void Systick_Handler(void) { 

 

  opt.: DisableInterrupts(); 

 

  if(ReadyQ != RunPt) { 

 

    ContextSwitch(); // PendSV 

    // switches to ReadyQ  

 

  } 

 
  opt.: EnableInterrupts(); 

} 

No reentrance issues since OS_AddThread and OS_Kill disable interrupts (and SysTick can never reenter 
itself).  
 
Deadlock or critical section: if another thread is preempted while holding Heap_Mutex and 
OS_AddThread is called, it will either block on Heap_Mutex with interrupts disabled (deadlock) or, if the 
mutex implementation uses Disable/EnableInterrupts internally, Q_Insert will be run with interrupts 
enabled (critical section). Similarly, with OS_Kill if Heap_Free uses Heap_Mutex. 
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Problem 2 (15 points): OS Core Functionality 
Assume a basic priority-based OS kernel (as shown in Problem 1) with the following InitStack() 
implementation and given user code: 

a) What will be the behavior of this program, i.e. what is the sequence of events in the system 
and what messages will appear on the ST7735 display, if any? 

Code also has a bug, missing DisableInterrupts in if(!new) return.  
Potential race condition: if there are interrupts with higher priority than SysTick that can call 
OS_AddThread. But in the worst case this just results in an extra context switch, so not a real issue.   
 
Semaphores can not be used if OS_AddThread can be called from background threads/interrupt handlers. 
For this reason, even the Heap can not really use semaphores either. Note that if Heap_Free uses 
semaphores, the deadlock/critical section in OS_Kill can not be fixed by moving the 
Disable/EnableInterrupts() – Q_Remove and Heap_Free need to be atomic – the only solution is to not 
use semaphores in the heap. And in both cases, it would be better to use Start/EndCritical instead of 
Disable/EnableInterrupts. (But this wasn’t asked for, so both solutions are acceptable.)    

long* InitStack(long *sp, void (*entry)(void)) { 
  *(sp)   = (long)0x01000000L;  /* xPSR */ 
  *(--sp) = (long)entry;        /* PC  */ 
  *(--sp) = (long)entry;        /* R14 */            
  *(--sp) = (long)0x12121212L;  /* R12 */       
  *(--sp) = (long)0x03030303L;  /* R3  */       
  *(--sp) = (long)0x02020202L;  /* R2  */     
  *(--sp) = (long)0x01010101L;  /* R1  */     
  *(--sp) = (long)0x000000000;  /* R0  */   
  *(--sp) = (long)0x11111111L;  /* R11 */       
  *(--sp) = (long)0x10101010L;  /* R10 */       
  *(--sp) = (long)0x09090909L;  /* R9  */   
  *(--sp) = (long)0x08080808L;  /* R8  */    
  *(--sp) = (long)0x07070707L;  /* R7  */ 
  *(--sp) = (long)0x06060606L;  /* R6  */ 
  *(--sp) = (long)0x05050505L;  /* R5  */ 
  *(--sp) = (long)0x04040404L;  /* R4  */ 
  return sp; 
} 
void Thread1(void) { 
  static int i = 0; 
  ST7735_Message(0, 0,  
             “Hello world”, i++); 
}  

void main(void) { 
  OS_Init(); 
  OS_AddThread(Thread1, 0); 
  OS_Launch(); // does not return 
} 

 
Thread1 will return back to its beginning when it returns/exits (on BX LR), so it will repeatedly output 
  Hello world: 0 
  Hello world: 1 
  …. 
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b) Describe minimal modifications of the OS to allow parameters being passed to threads via: 
  OS_AddThread(void (*task)(int), unsigned prio, int param) 
as shown in the example below. 

 
Problem 3 (25 points): Periodic Real-Time Tasks 
As discussed in class, many real-time systems use a periodic task model in which foreground 
user tasks (such as main control algorithms) are expected to execute periodically with a well-
defined and fixed (e.g. based on control theory) rate (and corresponding deadline).  

a) Develop an implementation of a periodic PID task that executes with a fixed period P (in ms). 
You can assume that the following typical OS time management functions are available: 
unsigned long OS_MsTime(void); // system time in ms 
void OS_Sleep(unsigned long sleepTime);  // in ms 

Bonus points for an implementation that maximizes accuracy and minimizes jitter.  

void PID(void) { 
 
  unsigned long last; 
   
  while(1) { 
 
    last = OS_MsTime(); 
 
    PIDWork(); 
 
    OS_Sleep(P –  
         (OS_MsTime() – last)); 
 
  } 
 
} 

Alternative: more accurate, using absolute time-
triggered schedule: 
 
void PID(void) { 
   
  while(1) { 
 
    PIDWork(); 
 
    OS_Sleep(P –  
       OS_MsTime() % P); 
 
  } 
} 

Hybrid: set last on first call (outside while), 
then last = last + P; inside while loop 
for a fixed schedule from first call on. 

void Thread1(int i) { 
  ST7735_Message(0, 0,  
             “Hello world”, i); 
} // should print “Hello world: 42” 

void main(void) { 
  OS_Init(); 
  OS_AddThread(Thread1, 0, 42); 
  OS_Launch(); // does not return 
} 

 
In OS_AddThread, pass the parameter to InitStack: 
  new->sp = InitStack(…, param);  
 
Then, in InitStack, initialize register R0 with that value: 
  long* InitStack(long *sp, void (*entry)(void), int param) { 
     … 
     *(--sp) = (long)0x000000000;  /* R0  */   
     … 
 
such that it gets passed into Thread1’s first function parameter when Thread1 gets switched in and 
executed.  
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b) Many RTOSs will provide a native realization of periodic (foreground) tasks. List the 
changes needed to extend a typical OS (such as the one from Problems 1-2) to provide 
periodic tasks: 
  OS_AddPeriodicForegroundThread(void (*task)(void), …,  
                                     unsigned long period);  
as shown below. Sketch (only) the modifications/extensions of basic OS routines as needed.  

// run every 10ms  
void PID(void) { 
  PID_Work(); 
}  
 

void main(void) { 
  OS_Init(); 
  OS_AddPeriodicForegroundThread(PID, 5, 10); 
  OS_Launch(); // does not return 
} 

Many solutions possible, here are just a few: 

1) Use a wrapper around each task that realizes one of the solutions from a).  
   void OS_ThreadWrapper(void(*task)(void), unsinged long P) { 
       while(1) {  

  *task(); 
  OS_Sleep(…);  
 } 
} 

Then, replace the PC entry point stored on the initial stack with the address of OS_ThreadWrapper() 
and set the initial value of R0 to the actual thread entry address (where the while(1) in the wrapper 
can also be replaced by solution akin to Problem 2): 
long* InitiStack(long *sp, void (*entry)(void), unsigned long P) { 

  *(sp)   = (long)0x01000000L;  /* xPSR */ 
  *(--sp) = (long)entry;          (long)OS_ThreadWrapper; 
  … 
  *(--sp) = (long)0x000000000;    (long)entry;  /* R0  */ 
  *(--sp) = (long)0x000000000;    P;  /* R1  */ 
 

2) Maintain a list of periodic thread functions and their periods in a global data structure and setup a 
periodic background thread (OS_AddPeriodicThread) or use the regular SysTick_Handler to call 
OS_AddThread on the start of a new period (e.g. (OS_MsTime() % P) == 0) for any such thread. In 
addition, setup the initial stack to call OS_Kill when the thread exits. This has several disadvantages: 
thread creation and killing overhead every period, and possible overloading of the system with 
multiple instances of the same thread if a one does not finish before the end of its period.  
 

3) Extend the TCB with a period entry and a pointer to the thread function, both of which are initialized 
by OS_AddPeriodicForegroundThread: 

    struct tcb { 
        … 
        unsigned long P;  // defaults to 0 
        void (*task)(void);  // defaults to 0 
        … 
    } 

Then, either setup the initial stack to ensure that a special OS_EndPeriod function is called when the 
thread exits/returns (BX LR), e.g. set the stack up to call OS_Kill (in all cases, for all threads) and 
let OS_Kill call OS_EndPeriod for periodic threads: 
  void OS_Kill(void) { 
    if (RunPt->P) { 
        return OS_EndPeriod(); 
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    } 
        …  // regular OS_Kill 
      } 

  long* InitStack(long *sp, void (*entry)(void)) { 
  *(sp)   = (long)0x01000000L;  /* xPSR */ 
  *(--sp) = (long)entry;        /* PC */ 
  *(--sp) = (long)OS_Kill;  or  (long)OS_EndPeriod; /* LR */ 
  … 

Then,  in OS_EndPeriod, move the thread TCB from the ready list/queue into a special wait 
list/queue (or mark the thread as waiting for its next period in the TCB and don’t schedule such 
threads), and trigger a context switch: 
  void OS_EndPeriod(void) { 
    Q_Remove(&ReadyQ, RunPt);  
    Q_Insert(&WaitQ, RunPt); 
    ContextSwitch(); // should never return 
  } 

Finally, in the regular SysTick_Handler, go through the list of waiting threads and check whether 
their start of the next period has been reached (e.g. by OS_MsTime()%P, by remembering and 
checking difference t to last run time, or by computing remaining ticks in OS_EndPeriod and 
counting down similar to sleep handling). For any thread that has, move it back from the wait into 
the ready queue and (important!) reset the stack pointer and call InitStack() to re-initialize 
the stack and re-start the task in the TCB from its beginning when it is switched in next time:    

  void SysTick_Handler(void) { 
    … 
    cur = WaitQ; 
    while (cur) { 
      if((OS_MsTime() % cur->P) == 0) { 
        tmp = cur; cur = cur->next; 
        Q_Remove(&WaitQ, tmp); 
        Q_Insert(&ReadyQ, tmp); 
        tmp->sp = InitStack(&tmp->stack[127], tmp->task); 
      } else { 
        cur = cur -> next; 
      } 
    } 
    … 
  } 

 
4) Use the regular OS_Sleep mechanism within the OS kernel itself: extend the TCB and setup the initial 

stack to call OS_EndPeriod as above. Then, realize an OS_Sleep in OS_EndPeriod, while also 
making sure to jump back to the beginning of the thread (instead of regularly exiting) and to return to 
OS_EndPeriod when the thread exits again next time.  

Simple C solution: 
  void OS_EndPeriod(void) { 
    while (1) { 
        OS_Sleep(…);   // one of the solutions, see above/below 
        *(RunPt->task)();  // call thread, let it return back here 
    } 
  } 
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c) Assuming your priority-scheduled system is running a sporadic/aperiodic foreground task Ti 
with execution time Ei at each priority level 0 ≤ i < N, what is the maximum jitter 
experienced by a periodic foreground task Tm at priority m? Assume that there are no 
background threads.  
 
Relative jitter = ∑ 𝐸𝐸𝑖𝑖𝑖𝑖≤𝑚𝑚  + OS_Sleep granularity 
 
Absolute jitter: depends on sleep strategy in a). With absolute/fixed time schedule, same as relative 
jitter. With relative schedule, errors can accumulate, so absolute jitter is potentially unbounded! 
 
 
 
 
 
 

Alternatively, if OS_EndPeriod is called via from OS_Kill (which overwrites LR in the BL call) setup 
link register to point back to OS_Kill or OS_EndPeriod (does not matter which) and then branch 
unconditionally into thread code (*not* using call/BL, which would override LR), needs assembly: 
 OS_EndPeriod 
    LDR  R0,=RunPt  
    …                  ; compute OS_Sleep parameter 
    BL   OS_Sleep 
    LDR  LR,=OS_Kill/EndPeriod ; only needed if called from OS_Kill 
    LDR  R1,[R0,#ofs]  ; load thread pointer from TCB 
    BX   R1            ; branch to thread, never returns here 

For computation of OS_Sleep parameter, if using variant with last (see a)), extend the TCB: 

    struct tcb { 
        … 
        unsigned long P;  // defaults to 0 
        void (*task)(void);  // defaults to 0 
        unsigned long last;   
        … 
    } 

Initialize in OS_AddPeriodicForegroundThread(): 
      new->last = OS_MsTime(); 
And call OS_Sleep and update last after OS_Sleep() returns as follows: 
     OS_Sleep(RunPt->P – (OS_MsTime() – RunPt->last)); 
     RunPt->last = OS_MsTime();   

or (absolute, fixed), after simplifying code (move increment before sleep and reduce equation):    
  RunPt->last = RunPt->last + RunPt->P; 
  OS_Sleep(RunPt->last – OS_MsTime());  

(There should be error checking for last < OS_MsTime() in case of deadline misses) 
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Problem 4 (15 points): Semaphores 
Given the following spin-lock semaphore implementation:   

 

 

struct Sema4 { 

 long value; 

 

     struct tcb *holder; 

 

}; 

typedef struct Sema4 Sema4Type; 

 

void OS_InitSemaphore( 

 Sema4Type *semaPt, long value)  

{ 

  long sr; 

 

  sr = StartCritical(); 

 

  semaPt->value = value; 

 

  semaPt->holder = 0; 

 

  EndCritical(sr); 

 

} 

 

void OS_Wait(Sema4Type *semaPt) { 

  long sr; 

 

  sr = StartCritical(); 

 

  if(RunPt != semaPt->holder) { 

 

    while(semaPt->value <= 0){ 

       EndCritical(sr); 

       sr = StartCritical(); 

    } 

 

    (semaPt->value)--; 

 

    semaPt->holder = RunPt; 

  } 

  EndCritical(sr); 

} 

 

void OS_bSignal(Sema4Type *semaPt) 

{ 

  int sr; 

 

  sr = StartCritical(); 

  semaPt->value = 1; 

 
 
  semaPt->holder = 0; 
 
 

  EndCritical(sr); 

} 
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a) This code has bugs. List and explain all the issues in the code, and describe the minimal 
changes required to fix each issue (you don’t need to show modifications in the code above).  
 
Firstly, there were a few (unintended) typos, specifically *semaPt instead of semaPt->value. 
 
The main conceptual issue: OS_Wait uses EndCritical()/StartCritical() inside the while loop. If 
OS_Wait is called with interrupts disabled, it will result in a deadlock. 
 
But also: a spinlock OS_Wait should not be called with interrupts disabled in any case. Either there 
will be a deadlock as above or, if Enable/DisableInterrupts() is used, interrupts will be enabled and 
critical sections re-opened when they shouldn’t be.  
 
The only proper way to fix both issues is to use an LDREX/STREX implementation. 
 
 
 
 
 
 
 
 

b) Modify the semaphore implementation such that it can avoid deadlocks if, by bad design, one 
of the threads happens to call OS_bWait() twice, i.e. calls OS_bWait() a second time on the 
same semaphore while it is already holding that semaphore as show in the example case 
below. Show the minimal necessary modifications (insertions, deletions, replacements) of the 
semaphore code such that this example executes without deadlocking (while preserving 
intended semaphore semantics). 
 
Sema4Type display_mutex; 
 
void Display_DrawLine(int x1, int y1, int x2, int y2) { 
  OS_bWait(&display_mutex); 
  … 
  OS_bSignal(&display_mutex); 
} 
 
void Display_DrawLogo(void) { 
   OS_bWait(&display_mutex); 
   … 
   Display_DrawLine(0, 0, 144, 42); 
   … 
   OS_bSignal(&mutex); 
} 
 
void Thread1(void) { 
  … 
  Display_DrawLogo(); 
  … 
} 
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Problem 5 (20 points): Real-Time Scheduling 
Consider a real-time system running three periodic tasks with the following periods (= deadlines) 
and execution times. You can assume zero context switch and interrupt overhead. 

Task Execution Time Period 
Airbag (A) 1ms 3ms 

Warning (W) 1ms 6ms 
Engine (E) e 4ms 

a) What is the maximum execution time e of taks E such that this task set is schedulable using 
an RMS strategy without missing deadlines? What is the processor utilization in this case? 
Draw one iteration of the resulting schedule. 

 
    e = 1.5ms 
 
    Utilization = 4/12 + 2/12 + 4.5/12 = 10.5/12 = 87.5% 
 
 
                               
                               
 A                              
                               
 W                              
                               
 E                              
                               
                               
                               

b) What is the maximum execution time e of taks E such that this task set is schedulable using 
an EDF strategy without missing deadlines? What is the processor utilization in this case? 
Draw one iteration of the resulting schedule. 

 
   EDF must be able to reach 100% utilization, so e = 2ms. 
 
 
   Different solutions possible, this assumes that for tasks with same deadline, priority is  
   given to smallest period: 
                               
                               
 A                              
                               
 W                              
                               
 E                              
                               
                               
                               

 

Time 

Time 3ms 6ms 9ms 12ms 4ms 8ms 

3ms 6ms 9ms 12ms 4ms 8ms 
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