
The University of Texas at Austin
Department of Electrical and Computer Engineering

Real-Time Systems / Real-Time Operating Systems
EE445M/EE380L.12, Spring 2019

Final Exam Solutions
Date: May 20, 2019

UT EID:

Printed Name:

Last, First

Your signature is your promise that you have not cheated and will not cheat on this exam, nor
will you help others to cheat on this exam:

Signature:

Instructions:

• Open book and open notes.
• No calculators or any electronic devices (turn cell phones off).
• Please be sure that your answers to all questions (and all supporting work that is required)

are contained in the space (boxes) provided.
• Anything outside the boxes will be ignored in grading.
• For all questions, unless otherwise stated, find the most efficient (time, resources)

solution.

Problem 1 10

Problem 2 15

Problem 3 15

Problem 4 15

Problem 5 25

Problem 6 20

Total 100

EE445M/EE380L.12, Spring 2019 Final Solutions 2
Name:

Problem 1 (10 points): Synchronization
Consider an OS that manages three resources. Threads can require two out of three resources, but
never all three. Given below is the code for an agent thread running as part of the operating
system handing out resources to different user threads (where multiple instances of each type can
be running) according to an OS-internal policy. User and agent threads synchronize using
semaphores s1, s2 and s3 associated with each resource as well as a done semaphore indicating
that user threads are finished using resources. All semaphores are initialized to zero.
OS_Agent() {
 while(1) {
 switch(policy()) {
 case 1:
 OS_bSignal(&s1); OS_Signal(&s12);
 OS_bSignal(&s2);
 break;
 case 2:
 OS_bSignal(&s2); OS_Signal(&s23);
 OS_bSignal(&s3);
 break;
 case 3:
 OS_bSignal(&s1); OS_Signal(&s13);
 OS_bSignal(&s3);
 break;
 }
 OS_bWait(&done);
 }
}

Thread1() {
 while(1) {

 OS_bWait(&s12);

 OS_bWait(&s2);

 …

 OS_bSignal(&done);

 }
}

Thread2() {
 while(1) {

 OS_bWait(&s23);

 OS_bWait(&s3);

 …

 OS_bSignal(&done);

 }
}

Thread3() {
 while(1) {

 OS_bWait(&s13);

 OS_bWait(&s3);

 …

 OS_bSignal(&done);

 }
}

a) What is wrong with this code?

Deadlock. E.g. assume agent notifies s1 and s2, then Thread1 grabs s1 and Thread2 grabs
s2.

b) Can the code be modified to fix the problem while keeping the OS general, i.e. without
hardcoding the number of instances running of each user thread type and without adding new
threads? If so, modify the code accordingly. If not, why not?

Combine semaphores into one semaphore per thread type.
-> This is the classic Cigarette Smokers Problem. There are other variants and solutions.

See the little Book of Semaphores.

EE445M/EE380L.12, Spring 2019 Final Solutions 3
Name:

Problem 2 (15 points): Scheduling
Given the task graph from Problem 3 in the midterm:

Now assume that we run this task graph on your perfectly functioning OS from Lab 3 using a
priority scheduler. Further assume that the tasks have the following execution times and
deadlines (relative to time 0).

Task Execution Time Deadline Priority
A 1ms 5ms 4
B 1ms 6ms 3
C 1ms 7ms 2
D 2ms 4ms 5 (highest)
E 2ms 8ms 1 (lowest)

// Global variables and initialization code

sema_t a = 0;
sema_t c = 0;
sema_t e = 0;

void threadA(void)
{

 A(); // A task

 OS_Signal(&a);
 OS_Signal(&a);

void threadB(void)
{

 OS_Wait(&a);

 B(); // B task

 OS_Signal(&e);

}

void threadC(void)
{

 OS_Wait(&a);

 C(); // C task

 OS_Signal(&c);

}

void threadD(void)
{

 OS_Wait(&c);

 D(); // D task

 OS_Signal(&e);

}

void threadE(void)
{

 OS_Wait(&e);
 OS_Wait(&e);

 E(); // E task

}

EE445M/EE380L.12, Spring 2019 Final Solutions 4
Name:

a) Assign priorities to threads to realize a strict earliest deadline first (EDF) scheduling.
Assuming all threads are launched at time 0, show the schedule of task executions.

 A

 B

 C

 D

 E

b) Are any of the deadlines violated? If so, is there an alternative priority assignment of
priorities that would result in a valid schedule without deadline violations (show the priorities
and change in the schedule)? If not, will EDF always be able to find a valid scheduler for a
task graph with dependencies, if one exists (show why)?

D violates its deadline. Alternative priority assignment and schedule requires C and D to
run before B, e.g. A(5), C(4), D(3), B(2), E(1).

EDF will not always find a valid schedule for tasks with dependencies. But it can be
extended by adjusting each tasks’ deadline to be the smallest of its original deadline and
the deadlines minus execution times of all its dependents, and doing so recursively / from
the end of the chain backwards, where priorities are then assigned as in normal EDF (i.e.
earliest adjusted deadline first). In this example, adjusted task deadlines would be:
 A: min(5ms, 6ms-1ms, 2ms-1ms) = 1ms
 B: min(6ms, 8ms-2ms) = 6ms
 C: min(7ms, 4ms-2ms) = 2ms
 D: min(4ms, 8ms-2ms) = 4ms
 E: 8ms
This variant of EDF that can handle task graphs with dependencies is called EDF*

c) Is there any priority inversion in your schedule from a)? If so, would a priority inheritance or
priority ceiling protocol fix the inversion including any deadline violations (if any)?

Technically, there is inversion between A,B,C that run before D, which has an earlier
deadline than all of them. In EDF, this is sometimes also called deadline interchange.

Priority ceiling/inheritance will not fix inversion between A/C and D. It is inherent in the
dependencies. But priority inheritance can replicate deadline adjustments above (by
defining predecessor tasks to be semaphore holders and raising their priority to the one of
the successor) such that inversion between B and C,D and deadline violations are avoided.

Note that priority ceiling/inheritance also don’t fix inversions inherent in mutual exclusion
between two tasks in regular periodic systems. The main problem they solve are unbounded
inversions from unrelated tasks with intermediate priorities in between.

Time 1ms 4ms 8ms

EE445M/EE380L.12, Spring 2019 Final Solutions 5
Name:

Problem 3 (15 points): Heap Management
Consider a heap of size 2048 bytes. Assuming an initially empty heap, given the following
sequence of heap allocations and de-allocations:

p1 = Heap_Malloc(1024);
p2 = Heap_Malloc(512);
Heap_Free(p1);
p3 = Heap_Malloc(256);
p4 = Heap_Malloc(512);
p5 = Heap_Malloc(256);
p6 = Heap_Malloc(512);
Heap_Free(p4);
Heap_Free(p5);
p7 = Heap_Malloc(768);
Heap_Free(p2);
Heap_Free(p3);

Show the state of the heap at the end of this sequence using a first fit, best fit and worst fit
allocation scheme. Assume that the heap manager does not require any overhead for extra meta-
data, and that the heap is allocated from bottom to top, i.e. a block always ends up being placed
at the bottom (lowest address) of its chosen free space. If an allocation fails, assume that the
function returns a null pointer and the rest of the sequence continues. For each allocation
scheme, answer the following questions: (1) Does the sequence complete without error? If not,
show the allocations that fail. (2) What is the amount of free space and what is the largest block
size that can be allocated after this sequence?

a) First fit b) Best fit c) Worst fit

Heap
p6
p6
p2
p2

p1 p5 p7
p1 p4 p7
p1 p4 p7

p1 p3

Heap
p5
p3
p2
p2

p1 p6
p1 p6
p1 p4
p1 p4

Heap

p5
p2
p2

p1 p7
p1 p4 p7
p1 p4 p7

p1 p3

0x0800

0x0400

0x0000

0x0800

0x0400

0x0000

0x0800

0x0400

0x0000

Sequence completes without
error.

Free space: 768
Largest allocatable: 512

p7 allocation fails.

Free space: 1536
Largest allocatable: 1024

p6 allocation fails

Free space: 1280
Largest allocatable: 1024

EE445M/EE380L.12, Spring 2019 Final Solutions 6
Name:

Problem 4 (15 points): Process Management
Recall that in Lab 5, you were given an ELF loader to load a process from the SD card. The ELF
loader’s exec_elf() routine parses the ELF file, loads its code and data segments into dynamically
allocated memory regions on the heap and finally calls OS_AddProcess() as shown below:
int exec_elf(const char *path, const ELFEnv_t *env)
{ …
 f_open(&f, path, FA_READ); // open & read ELF header
 …

 text = Heap_Malloc(code_size); // allocate & load code segment

 f_read(f, text, code_size);

 data = Heap_Malloc(data_size); // allocate & load data segment

 f_read(f, data, data_size);

 … // relocation using ‘env’

 f_close(f);
 return OS_AddProcess(entry, text, data); // add OS process
}

a) Given basic (but incomplete) implementations of OS_AddProcess() and OS_Kill() below,
complete the code to properly manage process memory and reclaim it when the process exits.
struct PCB {
 unsigned long Id;
 unsigned long numThreads;

 void *text;
 void *data;

};
struct PCB pcbs[NUMPCB];

struct TCB {
 struct TCB* next;
 unsigned int* sp;
 unsigned long Id;
 struct PCB *process;

};
struct TCB tcbs[NUMTCB];
struct TCB *RunPt;

EE445M/EE380L.12, Spring 2019 Final Solutions 7
Name:

int OS_AddProcess(void(*entry)(void), void *text, void *data){
 int sr, n;
 EnterCritical()
 for(n = 0; n < NUMPCB; n++) {
 if(pcbs[n].Id == 0) break; // found it; Id = 0 implies free PCB
 }
 if(n == NUMPCB) { ExitCritical(); return 0; }

 pcbs[n].Id = ++processId;
 pcbs[n].numThreads = 1;

 pcbs[n].text = text;
 pcbs[n].data = data;

 ExitCritical()
 return OS_AddThread(entry, STACK_SIZE, &pcb[n]);
} // sets TCB.process = &pcb[n]

void OS_Kill(void) {
 struct TCB *p;
 DisableInterrupts();

 if(RunPt->process) {
 RunPt->process->numThreads--;

 if(RunPt->process->numThreads == 0)
 {
 RunPt->process->Id = 0; // mark as free

 Heap_Free(RunPt->process->text);
 Heap_Free(RunPt->process->data);

 }

 }

 // Remove thread and return to TCB pool
 p = RunPt;
 while((p->Next) != RunPt) p = p->Next;
 p->Next = RunPt->next;
 RunPt->Id = 0; // mark as free

 ContextSwitch();
 EnableInterrupts();
}

EE445M/EE380L.12, Spring 2019 Final Solutions 8
Name:

b) Assuming a program on disk with a code segment of size 128 bytes and a data segment of
size 384 bytes. Given a heap size of 4096 bytes and assuming that the heap is not used for
anything else, what is the maximum number of concurrent instances of this program that you
can load and run?

 4096 / (128+384) = 8 instances.

c) Is it possible to increase the number of concurrent instances of the same program that can be
loaded and running? If not, why not? If yes, describe how this can be done and sketch the
changes that would need to be made to the ELF loader or OS code shown above. What is the
maximum number of concurrent instances in this case?

Code segment can be shared among all instances, i.e. only needs to be loaded once (when the
first instance is loaded).

(4096 – 128) / 384 = 10 instances.

Code changes needed:

1) Extend PCB to remember which program it belongs to, e.g. by storing the corresponding
file path (passed from the ELF loader into OS_AddProcess):
 int OS_AddProcess(…, const char* path){
 …
 pcbs[n].path = path;

2) Extend ELF loader to check whether program is already loaded and only allocate new
code segment if not, otherwise reuse existing:
 int exec_elf(const char *path, …) {
 …
 for(n = 0; n < NUMPCB; n++)
 if(pcbs[n].Id && strcmp(path, pcbs[n].path)) break;
 if(n == NUMPCB) {
 text = Heap_Malloc(code_size);
 f_read(f, text, code_size);
 } else {
 text = pcbs[n].text;
 }

3) Modify OS_Kill to release code segment only if there is no other PCB with same path:
 void OS_Kill(void) {
 …
 for(n = 0; n < NUMPCB; n++)
 if(pcbs[n].Id && strcmp(RunPt->process->path, pcbs[n].path))
 break;
 if(n == NUMPCB) {
 Heap_Free(RunPt->process->text);
 }

EE445M/EE380L.12, Spring 2019 Final Solutions 9
Name:

Directory Index
Table

Disk

File Start Blocks
A 0 3 0 7 0 Dir
G 3 7 1 4 1 Idx
* 10 4 2 9 2 *
 3 11 3 G

 4 12 4 A
 5 5 5 G
 6 14 6 *
 7 13 7 A
 8 15 8 *
 9 3 9 A
 10 2 10 *
 11 10 11 G
 12 8 12 G
 13 6 13 G
 14 14 G
 15 15 G

Directory
Disk

File Start Blocks
A 4 3 0 Dir -
G 14 7 1 * 5
* 1 5 2 G 8
 3 G 11

 4 A 6
 5 * 12
 6 A 9
 7 * 0
 8 G 0
 9 A 0
 10 G 3
 11 G 2
 12 * 13
 13 * 7
 14 G 15
 15 G 10

Problem 5 (25 points): File System
Assume two separate disks of identical size 4kB with 16 blocks each, where one disk uses a
filesystem with indexed and the other a filesystem with linked allocation. Further assume that the
exact same two files ‘A’ and ‘G’ (but nothing else) have been copied onto both disks.

a) Given the partial disk states (blocks, directory and file system tables) as shown below,
complete the missing information on each disk to represent correct filesystems. Mark each
block with the name of the file it belongs to (or ‘*’ if empty space). Assume that files ‘A’ and
‘G’ fit into the same number of blocks on both disks.

 Indexed Linked

b) What is the space overhead of the two filesystems, i.e. how many out of the 4096 bytes on
each of the two disks are usable for file data storage?

Indexed Linked
Block size is 4096/16 = 256 bytes.

Overhead is two 256 byte blocks for directory
and index:

4096 – 512 = 3584 bytes usable

Potentially, directory and index can be
combined into one block:

4096 – 256 = 3840 bytes usable

Block size is 4096/16 = 256 bytes.

Overhead is one 256 byte blocks for directory
and1 byte per remaining 15 blocks for links:

4096 – 256 – 15 = 3825 bytes usable

* Free space * Free space

EE445M/EE380L.12, Spring 2019 Final Solutions 10
Name:

c) Given the sequence of file system calls below, show the order of disk accesses that are made
by the each of the two filesystems. Assume that nothing is initially in memory. List the disk
block numbers accessed (read or written). How many disk accesses are made in each case?
 f_open(&fa, “A”, FA_READ); // open ‘A’

f_seek(fa, 306); // read integer from byte position 306
f_read(fa, &x, 4);
f_seek(fa, 545); // read integer from byte position 545
f_read(fa, &y, 4);
f_seek(fa, 319); // read integer from byte position 319
f_read(fa, &z, 4);
f_close(fa);
gpa = (x + y + z) / 3;
f_open(&fg, “G”, FA_WRITE);
f_seek(fg, 21); // write result to byte position 21
f_write(fg, &gpa, 4);
f_close(fg);

Indexed Linked

Read directory
Read index table
Read block 4 (306/256 = 2nd block of A)
Read block 9 (545/256 = 3rd block of A)
Read block 4 (319/256 = 2nd block of A)
Read block 11 (1st block of G)
Write back block 11

6 reads and 1 write = 7 accesses

Read directory
Read block 4 (1st block of A)
Read block 6 (2nd block of A)
Read bock 4 (avoid if last block kept in mem)
Read block 6
Read block 9 (3rd block of A)
Read block 4
Read block 6 (2nd block of A)
Read block 14 (1st block of G)
Write back block 14

7(9) reads and 1 write = 8(10) accesses

d) Can the file system performance be improved, i.e. can the number of disk accesses be

reduced in either case? If so, how, and how many disk accesses are made in that case?

Performance can be improved by including a disk cache that retains a number of blocks
recently ready from disk.

With perfect caching (requiring space for 3 blocks beyond directory and index tables in this
example), the number of accesses is reduced to 5 reads and 1 write = 6 accesses in both
cases.

EE445M/EE380L.12, Spring 2019 Final Solutions 11
Name:

Problem 6 (20 points): Remote Procedure Call
You are asked to implement a remote procedure call (RPC) between two micro-controllers over
the CAN bus. With RPCs, the OS provides the capability for a thread on one machine to call a
function implemented on another machine while making it look to the programmer as if the
thread is just calling a local function, where the OS on both machines transparently handle all the
necessary communication and synchronization to execute the call remotely. Given the high-level
CAN driver (can0.h) from the lab with driver primitives as listed below, complete the code
such that on the RPC client machine can call function on the RPC server. Show any changes to
the driver code that you need to make.

Client:
// *** can0.h ***
#define CAN_BITRATE 1000000
#define RCV_ID 2
#define XMT_ID 4

int CAN0_CheckMail(void);
int CAN0_GetMailNonBlock(uint8_t data[4]);
void CAN0_GetMail(uint8_t data[4]);
void CAN0_Open(void);
void CAN0_SendData(uint8_t data[4]);

// local function stub to call remote function
uint8_t PWM_Duty(uint16_t left, unit16_t right) {
 uint8_t data[4];

 data[0] = left & 0XFF; // marshalling of data into a CAN packet
 data[1] = left >> 8;
 data[2] = right & 0xFF;
 data[3] = right >> 8;

 CAN0_SendData(data); // send packet and receive response
 CAN0_GetMail(data);

 return data[0]; // De-marshalling of response
}

void speedThread(void) {
 …
 if(!PWM_Duty(l, r)) goto error;
 …
}

void main(void) {
 PLL_Init();
 OS_Init();

 CAN0_Open();

 OS_AddThread(&speedThread, 128);
 …
 OS_Launch(TIME_1MS);
}

EE445M/EE380L.12, Spring 2019 Final Solutions 12
Name:

Server:
// *** can0.h ***
#define CAN_BITRATE 1000000
#define RCV_ID 4
#define XMT_ID 2

int CAN0_CheckMail(void);
int CAN0_GetMailNonBlock(uint8_t data[4]);
void CAN0_GetMail(uint8_t data[4]);
void CAN0_Open(void);
void CAN0_SendData(uint8_t data[4]);

// local function
uint8_t PWM_Duty(uint16_t left, unit16_t right) {
 PWM_0_CMPA_R = left - 1;
 PWM_1_CMPA_R = right – 1;
 return motor_error;
}

// server thread
void RPC_Server(void)
{
 uint8_t data[4];
 uint16_t left, right;
 uint8_t res;

 while(1) {
 CAN0_GetMail(data); // Wait for message

 left = data[1]<<8 + data[0]; // De-marshall data
 right = data[3]<<8 + data[2];

 res = PWM_Duty(left, right); // Call function

 data[0] = res; // Marshall & send response
 CAN0_SendData(data);
 }
}

void main(void)
{
 PLL_Init();
 OS_Init();
 PWM_Init();

 CAN0_Open();

 OS_AddThread(&RPC_Server, 128);
 …

 OS_Launch(TIME_1MS);
}

	Problem 1 (10 points): Synchronization
	Problem 2 (15 points): Scheduling
	Problem 3 (15 points): Heap Management
	Heap
	Heap
	Heap
	0x0800
	0x0800
	0x0800
	p5
	p6
	p5
	p3
	p6
	p2
	p2
	p2
	p2
	p2
	p2
	0x0400
	0x0400
	0x0400
	p1 p7
	p1 p6
	p1 p5 p7
	p1 p4 p7
	p1 p6
	p1 p4 p7
	p1 p4 p7
	p1 p4
	p1 p4 p7
	p1 p3
	p1 p4
	p1 p3
	0x0000
	0x0000
	0x0000
	Problem 4 (15 points): Process Management
	Problem 5 (25 points): File System
	Problem 6 (20 points): Remote Procedure Call

