
The University of Texas at Austin
Department of Electrical and Computer Engineering

Real-Time Systems / Real-Time Operating Systems
EE445M/EE380L.12, Spring 2019

Midterm
Date: March 28, 2019

UT EID:

Printed Name:

Last, First

Your signature is your promise that you have not cheated and will not cheat on this exam, nor
will you help others to cheat on this exam:

Signature:

Instructions:

• Open book and open notes.
• No calculators or any electronic devices (turn cell phones off).
• Please be sure that your answers to all questions (and all supporting work that is required)

are contained in the space (boxes) provided.
• Anything outside the boxes will be ignored in grading.
• For all questions, unless otherwise stated, find the most efficient (time, resources)

solution.

Problem 1 20

Problem 2 25

Problem 3 15

Problem 4 20

Problem 5 20

Total 100

EE445M/EE380L.12, Spring 2019 Midterm 2
Name:

Problem 1 (20 points): Context Switching
If you recall the original context switch code shown in class (and used in the lab), you might
have noticed that the stack pointer (SP) was never saved on the stack. Instead, it was stored in
each thread’s TCB. Why? The following implementation stores the SP on the stack just like all
of the other registers. Although we only show the modified version of the context switch routine
and TCB below, you can assume that OS_Init() and OS_Start() have been modified accordingly.

a) What is wrong with the above implementation? What will happen if you try to run it?

b) Can you think of a way to fix the code to have a working context switch without making
changes or additions to the TCB or any global data structure? List all your assumptions and
show changes you need to make to the context switch routine. Hint: This is harder, so do this
last. There are multiple possible solutions.

struct TCB {

 struct TCB *next;

 long stack[128];

}

typedef struct TCB tcb;

tcb *runPt;

PendSV_Handler ; Saves R0-R3,R12,LR,PC,PSR
 CPSID I ; Disable interrupts
 PUSH {R4-R11} ; Save R4 - R11
 PUSH {SP} ; Save SP
 LDR R0,=RunPt ; R0 = pointer to RunPt
 LDR R1,[R0] ; R1 = RunPt
 LDR R1,[R1] ; R1 = RunPt->next
 STR R1,[R0] ; RunPt = R1
 POP {SP} ; Restore SP
 POP {R4-R11} ; Restore R4 - R11
 CPSIE I ; Enable interrupts
 BX LR ; Restores R0-R3,R12,LR,PC,PSR

EE445M/EE380L.12, Spring 2019 Midterm 3
Name:

Problem 2 (25 points): Multi-Threaded Programming
For each of the examples below, does the code have any potential race conditions or deadlocks in
a multi-threaded environment? Either describe why the code is correct, i.e. free of any such bugs,
or list all issues and fix the code such that it becomes free of any of them. Assume that unless
noted otherwise, all variables, semaphores and data structures have been properly initialized.

a) Assume this is the only code in the module, where get_seconds is the only routine that can be
called by external threads:

b) What about this case, assuming set_time is the only routine that can be called externally:

static struct time {
 unsigned int h;
 unsigned int m;
} total_time = { TOTAL_HOURS, TOTAL_MINUTES };

unsigned long get_seconds(void)
{

 return (total_time.h * 60 + total_time.m) * 60;

}

static struct time {
 unsigned int h;
 unsigned int m;
} total_time = { 0, 0 };

void set_time(unsigned int h, unsigned int m)
{

 total_time.m = m;

 total_time.h = h;

}

EE445M/EE380L.12, Spring 2019 Midterm 4
Name:

c) What about if the module now contains both of these the routines as the (only) externally
callable ones?

static struct time {
 unsigned int h;
 unsigned int m;
} total_time = { 0, 0 };

void set_time(unsigned int h, unsigned int m)
{

 total_time.m = m;

 total_time.h = h;

}

unsigned long get_seconds(void)
{

 return (total_time.h * 60 + total_time.m) * 60;

}

EE445M/EE380L.12, Spring 2019 Midterm 5
Name:

d) Finally, what about this abridged (incomplete) code of a very special OS:

tcb_type *runPt = 0;
tcb_type tcb[3];
int numThreads = 0;

void AddDefault(void)
{
 tcb_type *t;

 OS_bWait(&runList_mutex);

 if(runPt) {

 return;

 }

 OS_bWait(&tcb_mutex);

 t = &tcb[numThreads++];

 OS_bSignal(&tcb_mutex);

 t->next = 0;

 runPt = t;

 OS_bSignal(&runList_mutex);

}

void Add(void)
{
 tcb_type *t;

 OS_bWait(&tcb_mutex);

 if(numThreads < 3) {

 t = &tcb[numThreads++];

 OS_bWait(&runList_Mutex);

 t->next = runPt;

 runPt = t;

 OS_bSignal(&runList_Mutex);

 }

 OS_bSignal(&tcb_mutex);

}

EE445M/EE380L.12, Spring 2019 Midterm 6
Name:

Problem 3 (15 points): Thread Synchronization
In many applications, tasks or threads will have dependencies in the form of predecessor-
successor relationships in which a task is only allowed to execute once all its predecessors have
finished execution. Such dependency relationships can be expressed in the form of a so-called
task graph. Using only semaphores and regular C statements/variables, complete the code below
to implement the given, intended task graph and task dependencies.

Does your solution use the smallest number of semaphores, or could the pattern be realized using
fewer semaphores than you showed above? If so, how many are minimally needed?

// Global variables and initialization code

void threadA(void)
{

 … // A code

}

void threadB(void)
{

 … // B code

}

void threadC(void)
{

 … // C code

}

void threadD(void)
{

 … // D code

}

void threadE(void)
{

 … // E code

}

EE445M/EE380L.12, Spring 2019 Midterm 7
Name:

Problem 4 (20 points): Scheduling
For each of the following cases, assume that the given threads were added before calling
OS_Launch(). The OS scheduling policy is unknown. On launching the OS, the given profiling
waveform is captured. What are all the possible scheduling policies that the OS could be using?
For each case, identify the following based on the given profiling information: (1) whether a
round-robin and/or priority scheduling could have resulted in the given waveform, and (2) the
relative thread priorities, if any. Assume that thread execution times are all longer than one time
slice. Furthermore, assume that all semaphores are initialized to one.

a)

void thread1a() {
 PE1 = 0x02;
 foo1a();
 PE1 = ~0x02;
 OS_Kill();
}

void thread2a(){
 PD1 = 0x02;
 foo2a();
 PD1 = ~0x02;
 OS_Kill();
}

void thread3a(){
 PF1 = 0x02;
 foo3a();
 PF1 = ~0x02:
 OS_Kill();
}

PE1

PD1

PF1

Time

PE1

PD1

PF1

Time

EE445M/EE380L.12, Spring 2019 Midterm 8
Name:

b)

c)

void thread1b() {
 PE1 = 0x02;
 foo1b();
 OS_Sleep(3);
 PE1 = ~0x02;
 OS_Kill();
}

void thread2b(){
 PD1 = 0x02;
 foo2b();
 PD1 = ~0x02;
 OS_Kill();
}

void thread3b(){
 PF1 = 0x02;
 foo3b();
 PF1 = ~0x02:
 OS_Kill();
}

void thread1c() {
 OS_bWait(&mutex);
 PE1 = 0x02;
 foo1c();
 PE1 = ~0x02;
 OS_bSignal(&mutex);
 OS_Kill();
}

void thread2c() {
 OS_bWait(&mutex);
 PD1 = 0x02;
 foo2c();
 PD1 = ~0x02;
 OS_bSignal(&mutex);
 OS_Kill();
}

void thread3c() {
 OS_bWait(&mutex);
 PF1 = 0x02;
 foo3c();
 PF1 = ~0x02;
 OS_bSignal(&mutex);
 OS_Kill();
}

PE1

PD1

PF1

Time

PE1

PD1

PF1

Time

EE445M/EE380L.12, Spring 2019 Midterm 9
Name:

Problem 5 (20 points): Miscellaneous
a) What are the tradeoffs in setting the time slice your OS runs on? What are the effects of

having a very long (say 1s) or a very short (say 1ns) time slices vs. the default 1-10ms?

b) Is there a need for a SysTick interrupt in a purely priority scheduled OS? If not, why not? If
so, under what conditions and/or for what functionality is a SysTick absolutely needed?

c) Assume you have a critical section that is protected by a spin-lock semaphore implemented
using disabling/enabling of interrupts internally. Isn’t this equivalent to just removing the
semaphore and ensuring mutual exclusion by disabling/enabling interrupts for the critical
section instead? What is the difference? Under what conditions is using semaphores better
than using disabling/enabling of interrupts for mutual exclusion, and vice versa?

d) In class we discussed semaphores using a priority ceiling protocol to avoid priority inversion
problems. Aren’t such semaphores equivalent to just enabling/disabling of interrupts? What
is the difference?

	Problem 1 (20 points): Context Switching
	Problem 2 (25 points): Multi-Threaded Programming
	Problem 3 (15 points): Thread Synchronization
	Problem 4 (20 points): Scheduling
	Problem 5 (20 points): Miscellaneous

