Midterm Exam (Remotely Proctored)

(@ This is a preview of the published version of the quiz

Started: Apr 2 at 10:15pm
Quiz Instructions

Your taking this exam is your promise that you have not cheated and will not cheat on this exam, nor will you help others to cheat on this
exam.

e Open book and open notes.

+ No electronic devices other than your laptop/PC (turn cell phones off).

* You are allowed to access any resource on the internet, but no electronic communication other than with instructors.

» Please be sure that your answers to all questions (and all supporting work that is required) are contained in the space (boxes) provided.
» For all questions, unless otherwise stated, find the most efficient (time, resources) solution.

This class uses Proctorio (http://getproctorio.com/) for remote proctoring of exams. To use Proctorio, you must use Google Chrome as
your Web browser and install the Proctorio Chrome extension. Furthermore, your computer must have a decent amount of free RAM (close
any unneeded applications) and compute power as well as a working webcam and microphone. For more information see: Proctorio
Student Guide.

Since this an open-book/open-notes exam, | have disabled all the browser lock-down options. Proctorio will only be used to monitor and
record your video, audio, screen and web traffic to check e.g. that you are not communicating with others. Only | will be able to view that
information.

If you run into trouble before or during the exam, click the Proctorio extension icon (upper, right-hand corner) to access live chat
help or call 1-866-948-9248.

Question 1 20 pts

Given the partially completed context switch routine below, fill in the 3 blanks in the context switch and the TCB fields.
The TCB contains the following five fields, but you must determine the size of each variable and their order: savedSP
(saved stack pointer), sleeptime (nonzero if sleeping), notBlocked (0 when blocked on semaphore), next (pointer to next
TCB), and tid (unique thread ID).

Global variables:

struct TCB {

}
struct TCB *RunPt; // currently running thread
uintl6_t CurrentThread; // TID of current thread

Context switch routine:

PendSV_Handler

CPSID I

PUSH {R4-R11}

LDR RO, =RunPt

LDR RO, [RO]

STR SP, [Re, #2]
next LDR RO, [RO, #6]

LDR R1, [Re, #10]

BNE next

LDRH R1, [RO, #14]

cMP R1, #1

BNE next

STR RO, [R1]

LDR R2, =CurrentThread

LDRH R1, [Re]
STRH R1, [R2]

POP {R4-R11}
CPSIE I
BX LR

Question 2

What scheduling strategy does the context switch routine in Question 1 above use?

Is this a cooperative or preemptive OS?

Question 3

4 pts

15 pts

Given the following program and data memory dump of the C/compiled assembly code and stack of a ThreadA that is

currently switched out by the OS, i.e. not occupying the CPU.

void ThreadA(void){
0Xx00000F80 B510 PUSH
char count = 'A";
Ox00000F82 2441 MOVS
do {
0Xx00000F84 BF0OO NOP
UART_OutChar(count);
0Xx00000F86 4620 MoV
0X00000F88 FOOOF98B BL.W

{r4,1r}

r4,#0x41

ro,r4
UART_OutChar (©x000012A0)

savedSP --->

0x00000047

0x05050505

0x06060606

0x07070707

0x08080808

0x09090909

count++;

0x0000OF8C 1C64 ADDS
} while(count <= 'Z");
OX000OOF8E 2C5A CMP
©Xx0000OF90 DDF8 BLE
¥
OXx00000F94 E8BD4010 POP
OXx0000OF98 4770 BX

rd,rd,#1

r4,#0x5A
0Xx00000F86

{r4,1r}
1r

0x10101010

0x11111111

0x00000046

0x4000C000

0x02020202

0x00000343

0x12121212

0x00000F8C

0x00000F86

0x81000000

0x04040404

0x00000F80

What will happen, i.e. what will get executed and what output will appear on the terminal the next time the thread is
switched in by the OS? What will happen with this thread and what terminal output will be produced by it in the course of

its remaining execution?

Question 4

b -]
4
b -]
4
!(\'
[
[l
Il

i
i

©

v
Il

2

X

T T

o— 1 —

X o 2 —

2 ® — F —

12pt h¢

Paragraph

HTML Editorg

- ®

0 words_:E

10 pts

Assume a system running the following three periodic background threads (where a smaller number is higher priority).

Background Thread Priority Period / Frequency Execution Time
A 1 F1=4Hz E1=9ms

B 2 F2 = 8Hz E2 =8ms

C 3 F3 =10Hz E3 =13ms

(a) Describe how you can run this system using only one hardware timer. Specifically, briefly describe/sketch what the
timer interrupt handler will need to do at a high level (do not show detailed code) and what the timer reload value will

need to be initialized to.

(b) What is the maximum jitter experienced in this system? By which thread and why? You can ignore any other
interrupts including context switches for foreground threads.

In all case, make sure to show how you derived your results and any numbers, i.e. show how the values are computed
as general functions of F1...F3 and E1...ES3.

HTML Editorg,
B 7 U A~A~-TL EE E E E X X = i
EH~ BE & 2 & Vx = I e 12pt v Paragraph - ®
0 words
Question 5 15 pts
Given the following semaphore implementation:
void 0S_Wait(long *s) {
long sr;
sr = StartCritical(); void 0S_Signal(long *s) {
while((*s) <= 0){ long sr;
EnableInterrupts(); sr = StartCritical();
DisableInterrupts(); (*¥s) = (*s) + 1;
} EndCritical(sr);
(*s) = (*s) - 1; }
EndCritical(sr);
}

Is this a spinlock or blocking semaphore implementation?

Is this a cooperative or non-cooperative semaphore implementation?

If cooperative, how can it be made non-cooperative, and if non-cooperative, how can it be made cooperative?

Given the following code, where Dump() can be called by multiple threads for debugging purposes:

char DebugDump[DUMP_SIZE]; long UARTSema = 1;
unsigned int DebugCnt = 0;
void UART_OutChar(char c) {
void Dump(char c) { 0S_Wait(&UARTSema);
long sr; // UART code here

sr = StartCritical();
DebugDump[DebugCnt++] = c;
UART_OutChar(c);

EndCritical(sr);

if(DebugCnt >= DUMP_SIZE) DebugCnt

0S_Signal (&UARTSema);
}

What is the issue with this code given the semaphore implementation above?

How can the semaphore implementation be modified to fix this issue?

Question 6

Given the following code for the Readers-Writers problem discussed in class:

ReadCount = 0;

WriteCount = ©;
0S_InitSemaphore(&mutex,1);
0S_InitSemaphore(&wrt,1);

Ropen(){
0S_Wait(&mutex);
ReadCount++;
if(ReadCount==1)

0S_Wait(&wrt);
0S_Signal(&mutex);

RClose(){
0S_Wait(&mutex);
ReadCount--;
if(ReadCount==0)

0S_Signal(&wrt);
0S_Signal(&mutex);

} }

Wopen(){ WClose(){
WriteCount++; 0S_Signal(&wrt);
0S_Wait(&wrt); WriteCount--;

} }

Suppose all readers and writers use the same file. Given each of the following program states on the left side of the
table, when a new thread calls WOpen or ROpen, would the new thread be blocked because or allowed to continue?
Assume that for all the cases, the mutex is currently not held and none of the active readers or writers (i.e.
readers/writers that were not blocked) is inside any of the above functions .

State WOpen ROpen

ReadCount=2, WriteCount=0 [Select] v [Select] v
ReadCount=2, WriteCount=1 [Select] v [Select] v
ReadCount=0, WriteCount=1 [Select] v [Select] v
ReadCount=0, WriteCount=0 [Select] v [Select] v

Question 7 20 pts

A problem with the traditional Readers-Writers solution is that writers may suffer starvation. While the writer is waiting for
the semaphore, other readers may come in and the writer may never be able to enter. Modify the code to prevent this
problem. Other readers should no longer be able to start using the file when a writer waits for the wrt semaphore. In
other words, we want writers to have higher priority than readers. Please fill in the blanks to complete such an
implementation. If you think a line is not necessary, please select N/A.

ReadCount = 0;

WriteCount = 0;
0S_InitSemaphore(&mutex,1);
0S_InitSemaphore(&wrt,1);

[Select] v

[Select]

[Select]

Ropen(){

[Select]

0S_Wait(&mutex);

[Select]

ReadCount++;
if(ReadCount==1)
0S_Wait(&wrt);

[Select]

0S_Signal(&mutex);

RClose(){

[Select]

0S_Wait(&mutex);

[Select]

ReadCount--;
if(ReadCount==0)
0S_Signal(&wrt);

[Select]

0S_Signal(&mutex);

[Select] [Select]
} }

Wopen(){ WClose(){
[Select] [Select]
WriteCount++; 0S_Signal(&uwrt);
[Select] [Select]

WriteCount--;
[Select]

[Select]

[Select]

0S_Wait(&wrt);

[Select]

[Select] v

v [Select] v

Question 8

8 pts

With the update Readers-Writers implementation from Question 7, given each program state on the left side of the
table, when a new WOpen or ROpen is launched, would the new thread be blocked or be allowed to continue? Again
assume that all readers and writers use the same file and that none of the active readers and writers (i.e. readers/writers
that were not blocked) is currently in any of the functions.

WOpen ROpen
ReadCount=2, WriteCount=0 [Select] v [Select] v
ReadCount=2, WriteCount=1 [Select] v [Select] v
ReadCount=0, WriteCount=1 [Select] v [Select] v
ReadCount=0, WriteCount=0 [Select] v [Select] v

No new data to save. Last checked at 10:19pm

Submit Quiz

