Midterm Exam (Remotely Proctored) Results for Test Student
View Log (https://utexas.instructure.com/courses/1276512/quizzes/1355524/submissions/15277696/log)

(@ The following questions need review:
¢ Question 3
* Question 4

Score for this quiz: 75 out of 100 *
Submitted Apr 4 at 1:18pm
This attempt took 6 minutes.

Question 1 20 120 pts

Given the partially completed context switch routine below, fill in the 3 blanks in the context switch and the TCB fields. The TCB
contains the following five fields, but you must determine the size of each variable and their order: savedSP (saved stack pointer),
sleeptime (nonzero if sleeping), notBlocked (0 when blocked on semaphore), next (pointer to next TCB), and tid (unique thread
ID).

Global variables:

struct TCB {

uint16_t tid;

uint32_t sp;

struct TCB *next;

uint32_t sleepTime;

uint16_t notBlockec

}
struct TCB *RunPt; // currently running thread
uint16_t CurrentThread; // TID of current thread

Context switch routine:

PendSV_Handler

CPSID I

PUSH {R4-R11}

LDR RO, =RunPt

LDR Re, [Re]

STR sp, [Re, #2]
next LDR RO, [RO, #6]

LDR R1, [RO, #10]

CMPR1, #0

BNE next

LDRH R1, [RO, #14]

CMP R1, #1

BNE next

LDRR1, =RunPt

STR RO, [R1]
LDR R2, =CurrentThread
LDRH R1, [Re]
STRH R1, [R2]

LDRSP, [RO, #2]

POP {R4-R11}
CPSIE I
BX LR

Answer 1:

uint16_t tid;
Answer 2:

uint32_t sp;
Answer 3:

struct TCB *next;
Answer 4:

uint32_t sleepTime;
Answer 5:

uint16_t notBlocked;
Answer 6:

CMP R1, #0
Answer 7:

LDR R1, =RunPt
Answer 8:

LDR SP, [RO, #2]

Additional Comments:

Question 2 4 /4 pts

What scheduling strategy does the context switch routine in Question 1 above use? Round-robin

Is this a cooperative or preemptive 0S? We don't know. Deg

Answer 1:
Round-robin
Answer 2:

We don't know. Depends on how PendSV is triggered.

Additional Comments:

Question 3 15 /15 pts

Given the following program and data memory dump of the C/compiled assembly code and stack of a ThreadA that is currently
switched out by the OS, i.e. not occupying the CPU.

void ThreadA(void){ savedSP ---> 0x00000047
0x00000F80 B510 PUSH {r4,1r}

char count = 'A";

¥

0x00000F94 E8BD4010 POP
0x00000F98 4770 BX

0Ox00000F82 2441 Movs
do {
0x00000F84 BFOO NOP
UART_OutChar(count);
0X00000F86 4620 MoV
Ox00000OF88 FOROF98B BL.W
count++;
0©x00000F8C 1C64 ADDS
} while(count <= 'Z");
OX0000OF8E 2C5A cMP
©x00000F90 DDF8 BLE

r4,#ox41

ro,r4
UART_OutChar (@x000012A0)

r4,r4,#1

ra,#0x5A
0x00000F86

{ra,1r}
1r

0x05050505

0x06060606

0x07070707

0x08080808

0x09090909

0x10101010

0x11111111

0x00000046

0x4000C000

0x02020202

0x00000343

0x12121212

0x00000F8C

0x00000F86

0x81000000

0x04040404

0x00000F80

What will happen, i.e. what will get executed and what output will appear on the terminal the next time the thread is switched in by
the OS? What will happen with this thread and what terminal output will be produced by it in the course of its remaining execution?

Your Answer:

The program will continue at address 0x00000F86 (PC stored second to last on the exception stack) with value 0x47 in R4
(stored at the top of the stack as pushed during context switch in PendSV_handler). Hex 0x47 is ASCII 'G". As such, the
thread will continue by outputting 'G', 'H', ...

Once it reaches 'Z', the loop will exit and the thread will first pop R4 and LR from the stack and then reach it's last
statement (BX LR). The LR popped from the stack (last item on the stack), however, points back to the beginning of the
thread (that goes back to the way the initial stack for the thread was setup by the OS when creating the thread - R4 and LR
are pushed at the beginning and popped at the end). As a result, the thread will relaunch, and it will start from 'A’, 'B, ...
again and loop as such forever.

Additional Comments:

Question 4

10 110 pts

Assume a system running the following three periodic background threads (where a smaller number is higher priority).

Background Thread Priority Period / Frequency Execution Time
A 1 F1=4Hz E1=9ms

B 2 F2 = 8Hz E2 =8ms

C 3 F3 = 10Hz E3 =13ms

(a) Describe how you can run this system using only one hardware timer. Specifically, briefly describe/sketch what the timer
interrupt handler will need to do at a high level (do not show detailed code) and what the timer reload value will need to be

initialized to.

(b) What is the maximum jitter experienced in this system? By which thread and why? You can ignore any other interrupts
including context switches for foreground threads.

In all case, make sure to show how you derived your results and any numbers, i.e. show how the values are computed as general

functions of F1...F3 and E1...E3.

Your Answer:

Answer to (a): GCD of F1, F2 and F3 = 25ms reload. Tasks 1, 2, 3 happen every 10, 5, 4 timer interrupts.

Answer to (b): Thread 3 experiences highest jitter of E1+E2 = 17ms because when all three threads line up, thread 3 must

wait for both higher priority threads to complete)

Additional Comments:

Question 5

Given the following semaphore implementation:

15 115 pts

void 0S_Wait(long *s) {
long sr;
sr = StartCritical(); void 0S_Signal(long *s) {
while((*s) <= 0){ long sr;
EnableInterrupts(); sr = StartCritical();
DisableInterrupts(); (*s) = (*s) + 1;
} EndCritical(sr);
(*s) = (*s) - 15 }
EndCritical(sr);
}

Is this a spinlock or blocking semaphore implementation? = spinlock

Is this a cooperative or non-cooperative semaphore implementation? non-cooperative

If cooperative, how can it be made non-cooperative, and if non-cooperative, how can it be made cooperative?

Given the following code, where Dump() can be called by multiple threads for debugging purposes:

Insert OS_Suspend(

char DebugDump[DUMP_SIZE];
unsigned int DebugCnt = 0; 1 UARTS. 1
ong ema = 1;
void Dump(char c
p()1 void UART_OutChar(char c) {
0S_Wait(&UARTSema);
// UART code here

long sr;

sr = StartCritical();
DebugDump[DebugCnt++] = c;
UART_OutChar(c);

if(DebugCnt >= DUMP_SIZE) DebugCnt = @;
EndCritical(sr);

0S_Signal(&UARTSema);
¥

What is the issue with this code given the semaphore implementation above? = Interrupts are enabl

How can the semaphore implementation be modified to fix this issue? Thereis no fix, spinl

Answer 1:
spinlock
Answer 2:
non-cooperative
Answer 3:
Insert OS_Suspend() call into OS_Wait() while-loop (between enable and disable interrupts)

Answer 4:

Interrupts are enabled inside OS_Wait, making Dump() non-reentrant (critical section on access to DebugCnt)

~rractl
rrect!

Answer 5:

There is no fix, spinlock semaphores can not be mixed with Disable/Enablelnterrupts

Additional Comments:

Question 6

Given the following code for the Readers-Writers problem discussed in class:

ReadCount = @;

WriteCount = 0;
0S_InitSemaphore(&mutex,1);
0S_InitSemaphore(&wrt,1);

/8 pts

Ropen(){
0S_Wait(&mnutex);
ReadCount++;
if(ReadCount==1)

0S_Wait(&wrt);
0S_Signal(&mutex);

}

RClose(){
0S_Wait(&mutex);
ReadCount--;
if (ReadCount==0)

0S_Signal(&wrt);
0S_Signal(&mutex);

Wopen(){
WriteCount++;
0S_Wait(&wrt);

}

WClose(){
0S_Signal(8&wrt);
WriteCount--;

}

Suppose all readers and writers use the same file. Given each of the following program states on the left side of the table, when a
new thread calls WOpen or ROpen, would the new thread be blocked because or allowed to continue? Assume that for all the

cases, the mutex is currently not held and none of the active readers or writers (i.e. readers/writers that were not blocked) is

inside any of the above functions .

State WOpen ROpen
ReadCount=2, WriteCount=0 blocked M continue
ReadCount=2, WriteCount=1 blocked M continue
ReadCount=0, WriteCount=1 blocked v blocked
ReadCount=0, WriteCount=0 continue v continue

Answer 1:

blocked

Answer 2:

continue

Answer 3:

blocked

Answer 4:

continue

Answer 5:

blocked

Answer 6:
blocked

Answer 7:
continue

Answer 8:

continue

Additional Comments:

Question 7 20 120 pts

A problem with the traditional Readers-Writers solution is that writers may suffer starvation. While the writer is waiting for the
semaphore, other readers may come in and the writer may never be able to enter. Modify the code to prevent this problem. Other
readers should no longer be able to start using the file when a writer waits for the wrt semaphore. In other words, we want writers
to have higher priority than readers. Please fill in the blanks to complete such an implementation. If you think a line is not
necessary, please select N/A.

ReadCount = @;
WriteCount = 0;
0S_InitSemaphore(&nutex,1);
0S_InitSemaphore(&wrt,1);
OS_InitSemaphore(&rdr,1); v
OS_InitSemaphore(&s2,1); v
N/A v
Ropen(){ RClose(){
OS_Wait(&rdr); v N/A v
0S_Wait(&mutex); 0S_Wait(&mutex);
N/A v N/A v
ReadCount++; ReadCount--;
if(ReadCount==1) if(ReadCount==0)
0S_Wait(&wrt); 0S_Signal(&wrt);
N/A v N/A v
0S_Signal(&mutex); 0S_Signal(&nutex);
OS_Signal(&rdr); v N/A v
} }
Wopen(){ WClose(){
OS_Wait(&s2); v N/A M
WriteCount++; 0S_Signal(&wrt);

if(WriteCount==1)

OS_Wait(&rdr);

OS _Signal(&s2);

0S_Wait(&wrt);

N/A

OS_Wait(&s2);

WriteCount--;

if(WriteCount==0)

OS_Signal(&rdr);

0S_Signal(&s2);

Answer 1:

OS_InitSemaphore(&rdr,1);

Answer 2:

OS_InitSemaphore(&s2,1);

Answer 3:

N/A

Answer 4:

OS_Wait(&rdr);

Answer 5:

N/A

Answer 6:

N/A

Answer 7:

OS_Signal(&rdr);

Answer 8:

N/A

Answer 9:

N/A

Answer 10:

N/A

Answer 11:

N/A

Answer 12:

0S_Wait(&s2);

Answer 13:

if(WriteCount==1)

Answer 14:

OS_Wait(&rdr);

Answer 15:

0OS_Signal(&s2);
Answer 16:
rrect! N/A
Answer 17:
rrect! N/A
Answer 18:
rrect! OS_Wait(&s2);

Answer 19:

if(WriteCount==0)

Answer 20:

OS_Signal(&rdr);

Answer 21:

OS_Signal(&s2);

Additional Comments:

Question 8 8 I8 pts

With the update Readers-Writers implementation from Question 7, given each program state on the left side of the table, when a
new WOpen or ROpen is launched, would the new thread be blocked or be allowed to continue? Again assume that all readers
and writers use the same file and that none of the active readers and writers (i.e. readers/writers that were not blocked) is
currently in any of the functions.

WOpen ROpen
ReadCount=2, WriteCount=0 blocked v continue v
ReadCount=2, WriteCount=1 blocked v blocked v
ReadCount=0, WriteCount=1 blocked v blocked v
ReadCount=0, WriteCount=0 continue v continue v

Answer 1:

orrect! blocked

Answer 2:

rrect! continue

Answer 3:

ect! blocked

Answer 4:

rect! blocked

Answer 5:

act! blocked
Answer 6:

orrect! blocked
Answer 7:

srrect continue
Answer 8:

orrect continue

Additional Comments:

Fudge Points:

Final Score: 100 out of 100

