
The University of Texas at Austin
Department of Electrical and Computer Engineering

Real-Time Systems / Real-Time Operating Systems
EE445M/ECE380L.12, Spring 2022

Final Exam Solutions
Date: May 14, 2022

UT EID:

Printed Name:

Last, First

Your signature is your promise that you have not cheated and will not cheat on this exam, nor will
you help others to cheat on this exam:

Signature:

Instructions:

● Open book, open notes and open web.
● No electronic devices other than your laptop/PC (cell phones off and stowed away).
● You are allowed to access any resource on the internet, but no electronic communication

other than with instructors.
● Please be sure that your answers to all questions (and all supporting work that is required)

are contained in the space (boxes) provided.
● For all questions, unless otherwise stated, find the most efficient (time, resources) solution.

Problem 1 20

Problem 2 15

Problem 3 5

Problem 4 20

Problem 5 20

Problem 6 20

Total 100

EE445M/ECE380L.12, Spring 2022 Final Exam Solutions 2
Name:

Problem 1 (20 points): Context Switching
Context switching overhead can limit performance on systems with many tasks and a lot of context
switches. Given the following context switch implementation:

PendSV_Handler
 CPSID I
 PUSH {R4-R11}
 LDR R0, =RunPt
 LDR R1, [R0]
 STR SP, [R1]
 LDR R1, [R1, #4]
 STR R1, [R0]
 LDR SP, [R1]
 POP {R4-R11}
 CPSIE I
 BX LR

a) How long (in ns) does it take to perform a context switch in this implementation? Assume each
Load/Store takes 3 cycles, Push/Pop are 3 cycles per register, and all other instructions take 1
cycle. Also assume a 80 MHz clock and 10 cycles to enter/exit the interrupt not including
pushes/pops.

10 + 1 + 3*16 + 6*3 + 3*16 + 2 + 10 = 137 cycles

137 cycles * 12.5ns/cycle = 1712.5 ns

b) A way to save context switch time is to avoid the interrupt overhead and perform context
switches in a cooperative manner using OS_Suspend calls realized as regular subroutines, as
we did in the very first context switch implementation shown in class. What are the issues and
limitations with such an approach? Under what conditions can context switches be executed
this way (without using an interrupt and interrupt handler)?

An interrupt handler will automatically save registers that are not accessible otherwise
through a plain software context switch, specifically the PSR. As such, such an approach can
only work if context switches are executed at locations where the value of the PSR does not
need to be saved, i.e. is not needed by any instruction that follows after the swtich.

Otherwise, general issues with cooperative scheduling: requires user or compile to insert
OS_Suspend calls and provides no guarantees against buggy or malicious code taking over
the whole CPU. Also, providing real-time guarantees and scheduling is up to the
user/compiler then.

EE445M/ECE380L.12, Spring 2022 Final Exam Solutions 3
Name:

c) Another way to reduce context switch overhead is to reduce the number of or completely avoid
saving any registers on the stacks. Suppose we only PUSH and POP a subset (or none) of the
registers R4-R11 in the PendSV_Handler, what are the issues and limitations with such an
approach? Under what conditions can context switches be executed in this way?

Similar to the PSR, if a register is not saved during the context switch, its value will generally
be lost after returning back to the same thread. Hence, any register that is actively in use, i.e.
holds a value that will be needed by a subsequent instruction (i.e. that is “alive”) will need to
be saved at context switch time. As such, such an approach can only work if either the
registers that are alive are known (and saved) in the context switch routine, or if context
switches are performed at locations where it is guaranteed that only the registers that are
saved by the context switch carry live values.

d) An approach that combines solutions from b) and c) is called co-routines. In co-routines,
lightweight context switches are performed as cooperative subroutine calls that save only a
subset of registers, inserted at appropriate locations in the code (determined by the user or
compiler) where it is guaranteed that respective conditions are satisfied. Assuming a co-routine
approach where locations are chosen such that no registers need to be saved at all, implement
such a co-routine variant of OS_Suspend. What is the context switch delay in this case?
OS_Suspend
 ; need to save LR and SP
 ; at minimum
 PUSH {LR}
 LDR R0, =RunPt
 LDR R1, [R0]
 STR SP, [R1]
 LDR R1, [R1, #4]
 STR R1, [R0]
 LDR SP, [R1]
 POP {LR}
 BX LR

3 + 6*3 + 3+ 1 = 25 cycles

25 * 12.5 = 312.5 ns

If counting the OS_Suspend call itself:

26 cycles, i.e. 325ns

EE445M/ECE380L.12, Spring 2022 Final Exam Solutions 4
Name:

Problem 2 (15 points): Scheduling
Below is the list of tasks for those tasks from Problem 3 in the midterm. In the midterm, you
examined the context switching overhead of this schedule using standard algorithms.

Task Execution Time Period
T1 1 ms 5 ms
T2 1 ms 6 ms
T3 2 ms 10 ms
T4 6 ms 15 ms

a) Are EDF or RMS optimal to minimize the number of context switches? Why or why not?

No, neither EDF nor RMS can generally guarantee to minimize the number of context switches.
Its goal is to optimize for deadline violations. It does not take into account context switches and
context switch overheard.

b) Draw a schedule that minimizes the number of context switches while meeting all deadlines.
What is the maximum context switch overhead (in ms) such that the tasks are schedulable?

What we are ideally looking for here is a so-called non-preemptive schedule. However, there
is no non-preemptive schedule for this task set that meets all deadlines. Below is a schedule
that minimizes preemptions (there are other possible solutions).

Depending on whether a start of a new period of the already running task counts as a context
switch or not, there are 15 or 18 context switches in this schedule. With 1ms of slack, 1/15 =
0.067ms or 1/18 = 0.056ms maximum context switch delay (note that there are schedules with
18 context switches that have at least 1ms of slack before every deadline).

 T1

 T2

 T3

 T4

Time

EE445M/ECE380L.12, Spring 2022 Final Exam Solutions 5
Name:

Problem 3 (5 points): SVC Handler
Assume an OS that implements OS_Kill called from user threads via SVC traps. Shown below is a SVC
Handler and a skeleton of your OS_Kill function. This implementation has an error in it. What is the error,
how does it manifest itself and why is it happening. How can you correct it?

 SVC Handler
 LDR R12, [SP, #24]
 LDRH R12, [R12, #-2]
 BIC R12, #0xFF00
 LDR SP, {R0-R3}
 …
 BL OS_Kill
 …
 STR R0, [SP]
 BX LR

 OS_Kill() {
 DisableInterrupt();

 // Remove from run list
 runPt->prev->next = runPt->next;
 runPt->next->prev = runPt->prev;

 // Switch to next thread
 OS_Suspend();
 EnableInterrupts();

 // Prevent running dead thread
 for(;;);
 }

The problem is the endless loop at the end of OS_Kill. If OS_Kill is called from the
SVC_Handler, the loop and hence the SVC_Handler will never return, i.e. the system will be
stuck and blocked in an interrupt handler and hang.

The solution is to remove the endless loop at the end of OS_Kill.

Problem 4 (20 points): Process Loading
a) Is position-independent code and data sufficient to address relocation when dynamically

loading processes like in Lab 5? Why or why not?

No, position-independence can only address relocation of the process code and data
segments themselves. It does not resolve the address translation for accesses to OS code and
data, the locations of which are generally not known (or preferably not hardcoded) when a
process is compiled. As such, we need a separate mechanism to address references to OS
code and data.

EE445M/ECE380L.12, Spring 2022 Final Exam Solutions 6
Name:

b) In Lab 5, the ELF loader performed patching (aka relocation) at load time. Was this necessary
or could we have handled all of the patched cases via SVC traps and an SVC_Handler?

SVC traps can not be used for any OS calls that block, e.g. that wait on a semaphore (such as
the STT7735_Message call in Lab 5). For such calls, we need to perform relocation via
patching to call the OS routines directly.

c) Alternatively, could we have used patching to replace all SVC traps and the SVC_Handler?

Yes, we could use patching to resolve all OS calls. However, performing OS calls in an
interrupt context has other benefits that would be lost, including protection (handler vs.
thread mode and use of PSP vs. MSP). In practice, we want to perform all OS kernel calls
that need access to protected hardware in an interrupt context, while carefully separating out
OS calls that can run in user mode (and which in turn can use semaphores for waiting, etc.)

d) In a virtual memory system, where each process has its own private virtual address space, are
position independence, patching/relocation and/or SVC traps still required?

In a virtual memory system, process code and data segments do not need to be position
independent. Since every process gets its own address space, a process can be loaded at the
location it was compiled for as defined in the ELF file.

However, any code and data that is meant to be shared among different processes and that is
stored in pages that get mapped into the virtual address space of different processes at
potentially different locations needs to be compiled to be position-independent. This applies
to shared libraries such as DLLs in Windows.

This does normally not apply to OS kernel code and data, which is always mapped into the
same locations in each process, but where we still don’t want to or simply can not make
those locations know to the processes when they are compiled. As such, OS calls still need to
be resolved using traps or patching.

Problem 5 (20 points): Networking
Assume you want to implement a system transfering files between two TM4Cs that are connected
via Ethernet and CAN interfaces. Each TM4C has an SD card connected through the SPI protocol.
a) When your SPI bus is running at a clock rate of 4MHz, how long does it take and what is hence

the effective bandwidth for reading a contiguous block of 64MB of data from the SD card.
Assume zero command-response delay (NCR=0) and an immediate data start (i.e. zero SD card
latency and data packet delay).

64MB equals 64,000,000/512 = 125,000 blocks of 512 bytes each. 4Mbit/s means 2us/byte.
Using single-block SPI transfers: 125,000 * (6 + 1 + 512 + 3) * 2us = 130,500,000 us
Using a multi-block SPI transfer: 6 + 1 + (512+3) * 125,000 * 2us = 128,750,007 us

For a BW of 64MB/130.5s = 0.49 MB/s or 64MB/128.750007s = 0.497 MB/s

EE445M/ECE380L.12, Spring 2022 Final Exam Solutions 7
Name:

b) Assuming a CAN 2.0A bus running at a baud rate of 1Mbit/s using 11bit IDs and assuming no
bit stuffing is needed, how long does it take and what is thus the effective bandwidth for
sending 64MB of data?

8 data bytes per CAN frame means 64,000,000 / 8 = 8,000,000 CAN frames needed.

8,000,000 * (11 + 64 + 36) * 1us = 888,000,000 us

For a BW of 64MB/888s = 0.072 MB/s

c) Assuming an Ethernet physical layer baud rate of 10Mbit/s, how long does it take and what is
this the effective bandwidth for sending 64MB of data? You can assume that there are no other
machines on the Ethernet network.

1500 bytes per Ethernet frame means 64,000,000 / 1,500 = 42,667 Ethernet frames.
10Mbit/s means 0.8us/byte.

(42,666 * (7+1+12+2+1500+4) + (7+1+12+2+1000+4)) * 0.8us = 52,087,473.6 us

For a BW of 64MB/52.0874736s = 1.23 MB/s

d) How long does it take to first read 64MB of data from the SD card and then send it through
CAN 2.0A or Ethernet, and what is the effective bandwidth for each case? Which network
interface should you use for the file transfer, and why? Is there any way to reduce transfer time
and achieve a higher effective bandwidth? If so, how and what is the maximum bandwidth?

Assuming single-block SPI transfers:

CAN: 130.5s + 888s = 1018.5s for a BW of 0.063 MB/s
Ethernet: 130.5s + 52.02s = 182.52s for a BW of 0.35 MB/s
-> Chose Ethernet since it is much faster.

Can increase effective bandwidth by overlapping and pipelining of SPI reads and Ethernet
transfers, e.g. using DMA to read SPI in the background while sending Ethernet in the
foreground. Effective bandwidth in that case is the smaller of SPI and CAN or Ethernet
bandwidths, i.e. 0.072MB/s for CAN or 0.497MB/s for Ethernet.

e) Now, assume that there are 40 TM4Cs connected to each other using CAN and Ethernet, where
half of them are sending a 64MB file to another TM4C at the same time. How long does it take
for all 20 transfer to be complete and what is this the effective system bandwidth? Which
network should you use to connect the TM4Cs, CAN or Ethernet? Justify your answer.

For CAN, transfers of different TM4Cs will be serialized on the bus according the arbitration
priorities, i.e. the total transfer time is simply 20 times the transfer time per 64MB chunk, i.e.
20 * 888s + 130.5s (for SPI reads in each TM4C) = 17,890.5s with a BW of 20*64/17890.5
= 0.071MB/s.

For Ethernet, total transfer time will depend on how collisions on the Ethernet bus are
resolved. In general, if 20 masters try to send at the same time, the Ethernet bandwidth will
degrade significantly. Hence, CAN is likely the faster approach.

EE445M/ECE380L.12, Spring 2022 Final Exam Solutions 8
Name:

Problem 6 (20 points): Filesystem
You are asked to design a filesystem that supports SD cards of up to 32GiB (235 bytes) size, where
each block holds 512 bytes. The filesystem should support at least 60 files, where you can assume
that each directory entry takes up 8 bytes.
a) How many SD card blocks need to be reserved for the directory?

60 * 8 = 480 bytes, i.e. 1 block.

b) You choose to use linked allocation. What is the largest file size (in bytes) you can support and
why? You don’t need to write out the actual number, just the expression showing how it is
derived and computed is enough.

A 32GiB disk will have 226 = 67,108,864 blocks.

To be able to address all blocks, 32 bit, i.e. 4 bytes per index/link are needed.

This leaves 508 bytes for usable data per block.

Accounting for the reserved directory block, this leaves 67,108,863 * 508 = 34,091,302,404
bytes of usable disk space, which can all be allocated to a single file.

c) You choose instead to use a FAT file system. What is the largest file size (in bytes) you can
support and why? Again, it is ok to express file size as formula instead of final number.

Again, FAT table entries need to be 4 bytes wide.

The FAT needs to have 1 entry per disk block, i.e. 226 entries.

Total FAT size is 228 bytes. As such, the FAT requires 219 = 524,288 blocks on the disk.

Together with the directory block, this leaves 226 - 219 – 1 = 66,584,575 blocks of usable disk
space. This translates into 235 – 228 – 512 = 34,091,302,400 of usable space that is available
for a single file.

EE445M/ECE380L.12, Spring 2022 Final Exam Solutions 9
Name:

d) Assuming that you can cache the directory, one FAT and one data block in memory, given the
following sequence of file system accesses, what are the best-case and worst-case number of
SD card reads for the two file systems (linked, FAT). Assume that a FAT block remains in
memory until it is evicted by another FAT block load. The command Read(file* f, int X) should
return 1 byte at the Xth byte position in file f.

 // Open file with read permission
 File* f = fopen(“./testfile.txt”, “r”)

 char A = Read(f,100);
 char AA = Read(f,int(A));
 char B = Read(f,1000);
 char BB = Read(f,int(B));
 char C = Read(f,2000);
 char CC = Read(f,int(C));

Linked:
Read directory
Read first block of f, value of A can be 0 to 255, so next read is same block.
Read second block of f, value of B again 0 to 255
Read first block of f
Read second block of f
Read third block of f
Read fourth block of f, value of C again 0 to 255
Read first block of f
-> 8 accesses

FAT, best case is all FAT entries of f are in the same block:
Read directory
Read first block of f, access twice in memory
Read FAT block that contains first link of f
Read second block of f
Read first block of f
Read fourth block of f
Read first block of f
-> 7 accesses

FAT, worst case is that FAT entries are spread across different blocks:
Read directory
Read first block of f, access twice in memory
Read FAT block that contains first link of f
Read second block of f
Read first block of f
Read FAT block that contains second link of f
Read FAT block that contains third link of f
Read fourth block of f
Read first block of f
-> 9 accesses

	Problem 1 (20 points): Context Switching
	Problem 2 (15 points): Scheduling
	Problem 3 (5 points): SVC Handler
	Problem 4 (20 points): Process Loading
	Problem 5 (20 points): Networking
	Problem 6 (20 points): Filesystem

